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INTERATOMIC FORCES FROM SPECTRAL DATA, AND UTILIZATION OF

POTENTIAL CURVES IN SPECTROSCOPY, SCATTERING AND KINETICS*
by

Rogert James Le Roy+

(under the supervision of Professor Richard B. Bernstein)
ABSTRACT

Part I considers divers means of determining diatomic potential
curves, placing particular emphasis on utilization of the spectro-
scopically-observed distribution of vibrational-rotational energy
levels. The WidelyﬂuSed RKR procedure is applied to ground-state
64 lz;)]:z. A new approach is introduced which allows the détgrmination
of the dissociation limit and long-range potential tail from the dis-
tribution of the uppermost vibrational levels. It also yields a simple
expression for the vibrational spacings which leads to a 'better than
Birge-Sponer" plot for determining the dissociation limit. These
procedures were applied successfully to B(3ng)—state 022, Br2 and
Izo Other methods for the determination of diatomic potentials are

reviewed, including one utilizing 3~body atomic recombination rate

*Work supported by National Science Foundation Grant GB-16665 and
National Aeronautics and Space Administration Grant NGL 50-002-001.

tNational Reséarch Council of Canada Scholarship holder, 1969-71.
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constants.

The best known ab initio diatomic potential is that calculated
by Ko%tos and Wolniewicz (KW) for ground-state molecular hydrogen.
Nevertheless, a comparison of the calculated and observed vibrational
energy levels indicated that a small correction is required by the KW
potential; this is evaluated empirically.

Part II of the thesis considers a number of problems in which a
knowledge of the appropriate potential curves allows a better under-
standing of certain physical phenomena. Application of the new method
of Part I leads to a reassignment of some 12 uv lines emitting into
a shallow van der Waals excited state with a potential hump.

A study was made of spectroscopic and scattering-theory mani-
festations of the quasibound diatomic levels which lie above the
dissociation limit, but are bound by a potential barrier. Results of
illustrative computations are presented for ground-state molecular
hydrogen, showing extensive barrier penetration. This implies that
Bernstein's method of extracting long-range potentials from raotational
predissociation data should not be applied to hydridic diatomics.

The eigenvalues, and the expectation values of R, Rz, R—2 and kinetic
energy are calculated for all bound and quasibound levels of ground-
state H2, HD and D2, using the ab initio relativistic—-adiabatic
potential of Koioé and Wolniewicz.

A method for calculating exact tunnelling probabilities for one-
dimensional potential barriers is presented and used to test Bell's
approximate tunnelling factor formulae for truncated parabolic barriers.

Most of the results in this thesis have by now been published.
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1. INTRODUCTION

Knowledge of intermolecular forceé is a prerequisite to a basic
understanding of most of the physical, and chemical properties of matter.
However, although the formal theory for tﬁ; calculation of many observable
properties is well kriﬁ)W'n.,lm3 accurate potentials are available for a
relatively limited number of systems. It now appears as if the need
for such potentials will not be answered by}%.priori calculations in
the near fﬁfure. Only for the two simplest molecular systems, H2 and
Hez, have such theoreégcallpotentiéls ;chieved accuracy as good as, or
better than that of potentials obtained empirically by inverting
experimental data‘.4 On fhe other hand, a growing number of routes to
the potential quctionvfrom experimental data are being developed.z’3

The present discussion is concerned only with the simplest class
of interactions, those which may be treated mathematically as one-dim-

. ensional problems. This means, in effect, the isotropic interactions
of isolated pairs of atoms, although applications to complicdated
problems which are only approximately reducible to one mathematical
diﬁensién are also considered,

The presentation is divided into two parts, the first of which is
concerned with the determination of interatomic potentials by "inversion"
of experimental data. The greatest emphasis here is on the utilization
of the spectroscopically-measured distribution of vibrational-rotational
diatomic energy levels. Considered are the already widely used RKR

procedure,ﬁ and a new method which fogcuses attention on the uppermost

vibrational levels, yielding an estimate of the long-~range potential



tail and accurately locating the dissociation limit. Other approaches
are reviewed, including an indirect method based on measured rate
constants for atomic recombination. In a slightly different vein, the
accuracy of Ko%os and Wolniewicz's5 a priori potential for ground-state
H2 is examined by comparing calculated and observed vibrational energy
levels. This leads to the suggestion of an empirical correction to be
added to the theoretical potentisal.

The second part of the thesis considers a number of problems which
implicitly assume knowledge, of different degrees of completeness,
gbout the potential function. First, application of the new method of
Part I is coupled with theoretical knowledge of long-range interatomic
forces to facilitate the untangling of some hitherto confused spectro-
scopic assignments. Next, a study is presented of the manifestations,
spectroscopically and via seattering, of the quasibound diatomic
vibrational-rotational levels which lie above the dissociation limit,
but are partially bound by a potential barrier. Significant tunneling
is found fer ground-state H2’ HD, and Dz, implying that Bernstein'slo
method of extracting long~range potentials from rotational predissocia-
tion data should not be applied to hydrides (or deuterides). The
KoZ%os and Wolniewicz5 potential for ground state molecular hydrogen is
then utilized din the calculation of the eigenvalues, and expectation
values of kinetic energy and various powers of R for all the bound and
quasibound levels of HZ’ HD, and Dzw Finally, a method of calcuiating

exact tunneling probabilities for arbitrary ene-dimensional

potential barriers is presented. It is then used to delineate



11 . 12 .
the range of validity of Bell's  widely used™ approximate formulae

for tunneling through inverted parabolic barriers.

Much of the following consists of reprints of already published
material, or reports; some of the latter will be submitted for publica-
tion. As a result, each section is self-contained with its own figures,

tables, and footnotes and references.

FOOTNOTES

1. J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory

of Gases and Liquids (John Wiley and Sons, Inc., New York, 1964).

2., J. Ross (editor), Adv. Chem. Phys. AQ_(Molecular.Beams, Interscience

Publishers, New York, 1966).

3. J. 0. Hirschfelder (editor), Adv. Chem. Phys. 12 (Intermolecular

Forces, Interscience Publishers, New York, 1967).

4. The Kotos and Wolniewicz5 variational potential for ground-state
H2 has a better dissociation energy than the best spectroscopic
value existing6 when it was published. Although this situation has

" since been reversed by Herzberg's7 new measurements, the theore-
jtical value is still within one cm_l of experiment. For Hez, two
g_;:oups8 recently simultaneously published independent calculations
in good agreement with each other and with the best empirical
poténtials°

5. a) W. Kotos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964);

b) ibid. 43, 2429 (1965); ibid. 49, 404 (1968).



6. G. Herzberg and A. Monfils, J. Mol. Spectry. 5, 482 (1960).
7. G. Herzberg, J. Mol. Spectry. 33, 147 (1970); see also the
reanalysis of his data by W. C. Stwalley, Chem. Phys. Lett. 6,
241 (1970).
8. a) H. F. Schaefer, III, D. R. McLaughlin, F. E. Harris, and
B. J. Alder, Phys. Rev. Lett. 25, 988 (1970); b) P. Bertoncini and
A. C. Wahl, Phys. Rev. Lett. 25, 991 (1970).
9. See, e.g., the discussion by E. A. Mason and L. Monchick in
Chapter 7 of Ref.(3).
10. R. B. Bernstein, Phys. Rev. Lett. 16, 385 (1966).
11. R. P. Bell, Trans. Faraday Soc. 55, 1 (1959).

12. See, e.g., E. F. Caldin, Chem. Rev. 69, 135 (1969).
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2. THE RKR METHOD: POTENTIALS FROM VIBRATTONAL~ROTATIONAL DATA

2.1 DISCUSSION OF THE METHOD

The Rydberg-Klein-Rees (RKR) proceduxel allows the determination
of an attractive diatomic potential below the dissociation limit from
its known vibrational-rotational energy level spectrum. It is the
simplest and most accurate method kﬁown for determining the "bowl" of
a potential, and in the past decade it has been very successfully
applied to a wide variety of systems.z’3

In this approach, pairs of classical turning points lying on the
potential are calculated at energies corresponding to chosen values
(usually integer) of the vibrational index, v . The inner (R_) and
outer (R+) turning points, at the energy corresponding to a given value

of v are

R, =k {1 Fw? + T /aw) 1% i‘fm} A1, @
where
v
f(v) = v([G(v} - G(X)]"'L5 dx , (2a)
- v
Bv) = [Bx [6(v) - 6(x)]17% ax (2b)
/- -k
and

5
k= {n/tmen}? = {16.85803/1) [A% en2? (3)



|

Here the standard vibrational energies G(v) and rotational constants
BV are both in cm—l, and the reduced mass of the nuclei, 4 , is in amu
(lZC). The physical constants collected in the numerical factor in

Eq.(3) were taken from Ref.(4).

Nuclear vs Atomic Reduced Mass

Theré is some disagreement in the literature over whether the
reduced mass used in Eq.(3) should be that of the two nuclei, or of the
two atoms.5 This is equivalent to the question of which mass should
be used in the radial Schrddinger equation, of which Eqs.(1-3) is a

. i

WKB-based inversion.ﬁ Consideration of the separation of electronic
and nuclear motion in the total Hamiltonian shows that in the clamped
nuclei (simple Born-Oppenheimer) and adiabatic approximations, the
resulting radial Schrodinger equation depends only on the nuclear

>*  On the other hand, Herman and Asgharian's8 perturba-

reduced mass.
tion treatment of the exact Hamiltonian for nuclei and electrons
yielded a separable effective radial Schrodinger equation depending
mainly on the atomic reduced mass, but with correction terms depending
on the ratio of the atomic to the nuclear reduced mass. While this

question is not'!yet fully resolved, the work presented here (in Section

2.2) uses the nuclear reduced mass.

Corrections to Calculated Turning Points
It is apparent from consideration of Eqs.(1-3) that any error in
the assumed values of the physical constants or reduced mass affects

calculated RKR turning points only through the multiplicative factor



K in Eq.(1). This is particularly important in view of the uncer-
tainty as to which reduced mass (atomic or nuclear) should be used.9
Clearly, such errors are simply removed by multiplying all the calcula-

ted turning points by the numerical factor
K(corrected) / K(initial).

This approach will be found useful in Section 2.2 .

Combined Isotope RKR Calculation

A fact apparently not previously noted is that experimental data
for different isotopes of a particular species can be used together in
an RKR calculation of the internuclear potential for a given electronic
state. The necessary assumption, valid within the clamped nueclei
approximation,6 is that the different isotopes are subject to precigely
the same internuclear potential. For all non-hydrogenic molecules
this is a very good approximation, and in any éase, disagreement with
it is probably less than the error implicit in the use of the WKB
approximation on which the RKR method is based.ll

According to the WKB apprbximation,l3 in a given potential well
the energy corresponding to vibrational index vy of isotope-i

precisely corresponds to index
. 4

of isotope-j. Thus the experimental G(v) and Bv data for isotope-i
(i # j) may be treated simply as additional isotope-j data at the

(usually non-integer) vibrational index vj(i).,l4 Combining the data



in this manner should give smoother and more accurate G(v) and B,
functions, covering a wider range than for any of the isotopes congidered
alone. This means that more accurate and extensive f£(v) and g(v)
functions and turning points will be obtained. In addition, the quadra-
tures will only have to be evaluated once for a given state of a
particular chemical species.

An example of the type of situation in which this "combining
isotopes' approach may be particularly fruitful is the B(3H+Ou) state
of Br2. Here there exist fairly accurate vibrational energies
(reported to 0.01 cm-l) and B values for levels v! = 1-9 of 79’79Br 15

2’
and for v' = 9-19 and 50-53 of both of the pure isotopes 79’7931:2 and

81’81Br2}6’171h addition much less accurate band-head energies (''mot

79,81Br2

available for the intermediate region v' = 20—48.19 Combining these

accurate to better than 2 cm_l") for the mixed isotope are
data as suggested above should give the best RKR curve currently
obtainable for this state. This approach could also be very profitably
applied to Brz(x 122) for which the existing data are quite analogous

to those for the B—state.15

FOOTNOTES
1. a) R. Rydberg, Z. Physik 73, 376 (1931); ibid, 80, 514 (1933);
b) 0. Klein, Z. Physik 76, 226 (1932); c) A. L. G. Rees, Proc.

Phys. Soc. (London) 59, 998 (1947).
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See, e.g.; a) E. A. Mason and L. Monchick, Adv. Chem. Phys. 12
(Intermolecular Forces), 329 (1967), SIIIA and references mentioned
therein; b) J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and

W. Klemperer, J. Chem. Phys. 42, 25 (1965); ¢) R. J. Spindler, Jr.,
J. Quant. Spectry. Radiat. Transf. 9, 597, 627, 1041 (1970);

d) J. A. Coxon, J. Quant. Spectry. Radiat. Transf. (in press).

R. J. Le Roy, J. Chem. Phys. 52, 2683 (1970); see Section 2.2 .

B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys.
41, 375 (1969).

The nuclear reduced mass was used in Ref.(3), while atomic reduced
masses were definitely used in Ref.(2d), and probably also in the
other work referred to in footnote (2).

See, e.g., J. 0. Hirschfelder and W. J. Meath, Adv. Chem. Phys. 12,

(Intermolecular Forces), 3 (1967).

L. Wolniewicz, J. Chem. Phys. 45, 515 (1966), and references therein.
R. M. Herman and A. Asgharian, J. Mol. Spectry. 19, 305 (1966).

For the inverse problem of determining vibrational-rotational
eigenvalues from a known potential, it is readily shown that the
first-order error in an eigenvalue arising from use of the wrong
reduced mass is the product of the relative error in the mass used,
times the expectation value of the kinetic energy of the level

considered:

o o B(right)
AE = W?%Eé)_ - ]} <Tv,j’>

For ground-state H2, a thange from atomic to nuclear reduced mass

yields level shifts as large as 5.6 em™ T, 10



10.

11.

12.

l3l

14.

15.

16.

17.

18.

19.

|

10

R. J. Le Roy and R. B. Bernstein, J. Chem. Phys. 49, 4312 (1968);
see Section 5.

The dominant correction to the clamped nuclei approximation, the
diagonal correction for nuclear motion (adiabatic correction) is
relatively small and varies directly as the inverse of the isotopic
nuclear reduced mass. For the worst possible case, H2 , Kotos and
Wolniewiczl2 have calculated this quantity for the ground electronic
state. In this case, below the dissociation limit the effective

. . -1 s ~1
correction has a maximum of 25 em ~, a minimum of -18 cm

, and
approached zero at large R . .
W. Kotos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964).

See, e.g., a) E. Merzbacher, Quantum Mechanics (John Wiley and Somns,

New York, 1961), Chapter 7; b) A. S. Davydov, Quantum Mechanics

Pergamon Press, London, 1965), §25; ¢) D. R. Bates, Quantum Theory:

I. Elements (Academic Press, New York, 1961), Chapter 7.

This assumes that the vibrational energies are all expressed on
the same absolute scale, such as relative to the potential minimum.
J. A. Coxon, J. Mol. Spectry. (in press).
J. A. Horsley and R. F. Barrow, Trans. Faraday Soc. 63, 32 (1967).
The four highest observed levels have recently been reassigned as

v oo . , , , 16 15,18
v! = 50-53, increasing the experimentalists numbering by one.
R. J. Le Roy and R. B. Bernstein, J. Mol. Spectry. (1971, in press);

see Section 3.2 .

W. G. Brown, Phys. Rev. 38, 1179 (1931).



2.2 RKR POTENTIAL FOR GROUND-STATE IZ(X lz;)

A detailed reanalysis of existing spectroscopic data for ground-
state 12 was. performed, yielding improved molecular constants and RKR
turning points. This work, reprinted below, was published in the
Journal of Chemical Physics, Volume 52, pp. 2683-2689 (American Institute
of Physics, New York, 1970).

Unfortunately, when this work was done the best existing values of
the physical constantsl and the reduced mass of the nuc1e12 were not
used in the RKR calculation. However, as discussed in Section 2.1, the
reported turning points (in Table III, below) may be corrected by

multiplying them all by the factor

K(corrected) _ {16.85803 63.437700

%
K(initial) 16.85749 * 63.4‘37697} = 1.0000160 .

FOOTNOTES

1. B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys.
41, 375 (1969).
2. J. H, E, Mattauch, W. Thiele, and A. H. Wapstra, Nucl. Physics 67,

1 (1965).
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Molecular Constants and Internuclear Potential of Ground-State Molecular Jodine®

Roeerr J. LEROY

Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconson 53706
(Received 3 September 1969)

A reanalysis of the spectroscopic data for ground-state iodine yields unproved rotatxong} constants and
vibrational energxes which are used to compute a new RKR potential. Polynomial represéntations of the
vibrational energxes and rotational constants are presented which fit all the data to within the respective
experimental precision of Verma and of Rank and Baldwin. New approaches are introduced for séparately
obtaining the rotational B, and D, constants and for estimating error bounds for computed RKR turning

points.

INTRODUCTION

In 1960 Verma' reported some remarkable mea-
surements of several series of uv-resonance emission
doublets in the spectrum of 1, excited in an electric
discharge. Although the final state of one of these

-resonance series has recently been reassigned as

0,*(*I1),? the remaining lines thoroughly catalogue the
levels of ground-state X 0,*(1Z)1, up to within 49 of
the dissociation limit. Because of this remarkably
complete set of data, the ground state of I, has become
almost a touchstone of RKR potential calculations,!#5

In the present work, the data for the ground state
are handled somewhat differently than was done pre-
viously, and discrepancies of up to 6.6 cm™! were found
between the vibrational energies obtained here and
the earlier results.! Since the reported ground-state
RKR potential curves'*5 arc based on this ecarlier
energy spectrum,! all will be somewhat in error,

Furthermore, most of these curvest®4 were calculated.

all the way to the dissociation limit by utilizing the
energies of a set of levels which recently has been
reassigned to another electronic state.? An improved
energy spectrum and RKR potential will be presented

. which are based on both the uv-resonance data! and

the more accurate, but restricted (to v<22), green-
line resonance data of Rank and Baldwin.®

SELECTION OF EXPERIMENTAL DATA
The raw data used in the present analysis con-

" sisted of the green-line resonance doublets measured

by Rank and Baldwin®, and five of the six uv-reso-
nance doublet series reported by Verma.!® The former

-measurements are relatively accurate, bemg reported

to 0.001 cm™, though they only describe levels v=
0-22. On the other hand, while the uv measurements
span the region from v=0-84, they were reported
only to an accuracy of 0.01 cm™. Because of this dif-
ference in precision, only the green-hne data were

.used in determining the vibrational energies and rota-

tional B, constants for v<22. In addition, all of the
blended uv lines were omitted from conmderatlon" as

well as three lines which the present analysis suggests
were misassigned,?

2683

THE ROTATIONAL CONSTANTS

Values of B, constants are:obtained from the ex-
perimental P-R doublet branch splittings

bop_p(s,J,) = (41+2)[B— 200 +T+1)D,], (1)

where Avp_g(v,J,) is the observed doublet splitting
for vibrational level v, in the resonance seties charac-
terized by rotational quantum number J,. In the
original analysis of the uv data,! Verma tricd to
obtain a polynomial representation for the D, con-
stanis by fitting the splittings for different J, dircetly
to (1). However, in Ref. 7 it was pointed out that
this approach is not very meaningful, because the
cffect of the D, values on the splittings is less than
the experimental precision. On the other hand, sig-
nificant information on the D,’s can still be obtained,
because while the effect of this term on the doublet
splittings varies as =8XJ,% 1tsp effect on the vibra-
tional energies varies as & J A F or the Jr=
series this difference is particularly significant.

Since the D, constants arc known to be small,l7

-they will affect the observed splittings only slightly. .

Hence, to a first approximation they can be replaced
by any plausible set of trial values {D,®}, yielding

Bv(") = [AVP___E(v; Jr)/(4jl‘+ 2)]+2(Jr2+-]r+ 1)Dv(")
=B,—2(J24J+1) (Dy— D,")B,. (2)

These estimates of the exact D, and B, values may
then be applied to the data for resonance series J,=J,
to yield an apparent vibrational energy for level o,
G, (v). Comparison of the apparent vibrational en-
ergies obtained from the data for two different reso-
natice series then yields improved estimates of D,:

G ™ (v) — Gy, ™ (1) )

D, = D () (

(J2+J2)*— (J+J1)2
202 4-J A1), )
= Dy= (Dy~ D,W) { —— 3
D= (D= D:) PtJo T+ 3

Here (JA4J,41), is an average for the different
resonance series contributing splittings at levels near v.1t

87 resonance’
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squares fit to the data.’® The convergence of dy'™ to
an asymptotic value was used as the criterion of con-
vergence for the {D,", B, ™} sequence.

The high accuracy of the green-line splitting for
v< 22 relative to the uv splittings used for v>22 was
retained in the polynomial representation of the B,
constants. Iirst, a sccond-order least-squares fit to the
green-line data for 9< 22" yielded approximate values
of the three lowest-order polynomial coeflicients, B.,
e, and v, Next, the contributions of these terms
[i.e., Be—ao(v+3)-+v.(v+%)%] were subtracted from

- the 79 individual B, values® and the remainders

fitted to an expression of the form

R(3) = 5.0+ 5 e (oD%
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Fic. 1. Dy vs v for ground-sfate X 12,* I,. @, empirical points;
- - -, curve from expression (5).

These D,V values may then be substituted into
the first part of (2) to yield improved B,"*? values,
++» etc. The error in a D, value obtained after »
such iterations is

2(J24T41), )"
AT tJ2+

Clearly the sequence {D,®, B,®}, {D,®, B,®} ...
etc. will converge to the exact {D,, B,} as long as

F=200 24T A1)/ (J+Toeb J2HT0) <1.

In applying (3), apparent vibrational energies from
the J,=287 resonance series were compared in tumn
to those yielded by each of the J1=49, 46, 25, and 23
series, for all levels 0<v<82.2 In applying (2), for
v<22 only the green-line resonance splittings were
used (i.e.,, J,=34 only)¥; therefore, in this region
720.3 and the {D,™, B,™} sequence will converge
quite quickly. Analogously, for 12243 the J,=87, 49,
and 46 splittings are weighted about equally; hence
f~0.85, and the sequence will converge here also.
However, fR22 for 22<v< 43, since in this region only
the J,=87 splittings were measured with high pre-
cision.* Therefore, Eq. (3) was only applied to the
data for <22 and v>43, while D, values in the
intermediate region were obtained by interpolation.

In applying the above stepwise convergence proce-
dure, the individual values of D," and B,™ were
always represented by polynomials in (v+43) before
utilizing them in the next step. The values of D™
were represented by

D, = D48, (0+-3) + 0 (144,

where D™ and 8, were calculated from the other
spectroscopic constants using 'the expressions given
by Herzberg,” and dy™ was obtained from a least-

D,,(")_D.,= (Dv«»—Dv) (

Then the contributions of these initial §, and ¢, values
were subtracted from the B, values for <22 and
these remainders fitted to a quadratic, yielding im-
proved estimates of B., a, and ¥y. This cycle was
then repeated until the polynomial coefficients con-
verged.!®

The above { D, B,™} convergence procedure was
applied three times, using polynomial representations
of the B,™ constants with maximum order M =3, 4,
and 5, respectively.® In each’ case, the initial trial D,
values were {D,®=0}. The results are shown in
Table I.

In the above manner, the following mutually con-
sistent expressions were found to best represent the
rotational constants B, and D, (in cm™):

B,=3.7395X 10~2— 1.2435X 10~4(v-+%)
+4.498X 1077 (3-+3)2— 1.482X 1078(v4-§)?
—3.64X 10711 (v 1)4,  (4)
D,=454X 104 1.7X 1071 (v-+3)
+7X1072(+$)%  (5)

Expression (4) represents the experimental B, values
[obtained by substituting (5) into (1)] within a
standard error of -£0.24X 10~ em™! for 9<22, and
#+£3.2X10~* for v>22. Figure 1 contrasts a plot of
expression (5) with the final D, values obtained from
expression (3). Utilizing the first term of (4) in the

TaBtE 1. Results of {D,™, B, (™} convergence using different
polynomial fits to the B,™ values.® ERR is the standard error
of the D, representation. All quantities are in cm™.

B, representation D, representation

Order M 10®XB, 10*%a, IPXERR  10°%d,
3 3.7397  1.2519 6.7 0.004,
4 - 3.7395  1.2435 4.4 0.007,
5 3.7399  1.2652 © 4.4 0.007,
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TaBLE II. Absorption lines exciting observed resonance seties. R(33) is for the green-line series® and the others for the uv series.t

Line R(33) Pr4n

R(48) P(23) R(24)

ve (c™) 18 307.487 54 633.216

54 633.155 54 633.203 54 633.182

usual manner,® one obtains an equilibrium internuclear
distance of Rgq=20065; A for ground state I,

THE VIBRATIONAL CONSTANTS

A shift of B, values for v>22 generated from ex-
pression (4) by one standard error, £3.2X10~* cm™,
changes vibrational energies obtained from the reso-
nance series characterized by J,=87 by /~F2.5 cm™,
while affecting energies obtained from the other (uv)
series by between 7F0.15 and F0.8 cm™! (correspond-
ing to J,=22 and 49, respectively). In view of this,
the J,=87 data were not utilized at all in the de-
termination of the vibrational spectrum and constants
for the ground state, This means that the highest
level fitted is v=82, although the highest level ob-
served is 1=284,

Ultilizing expressions (4) and (5), a vibrational
ladder may be constructed {from the data for cach of
the five remaining resonance serics, J,=49, 46, 34, 25,
and 22, Unfortunately, the emission lines correspond-
ing to the inverse of the five molecular transitions
exciting the various series are masked by the intense
atomic lines. Also, the atomic emission and molecular
absorption lines have a significant width,” so that the
peaks of the latter need not coincide with those of the
former.

In the present work, improved values for the peak

energies of the exciting molecular transitions were
obtained by shifting the five independent vibrational
ladders so as to minimize disagreement,? yielding the
frequencies given in Table II. A weighted average
value for the 4 uv series is 54 633.18 cmy—. This lics
between the center of the atomic line which is the
source of the uv light, 54 633.46 cm™\,2 and the value
v,=54 632,93 cm™! used in the original analysis' as
the single excitation frequency for all 6 uv resonance
series. :
The above procedure, combined with the method
of obtaining the D, values,” yields a fairly high degree
of internal consistency between the results for dif-
ferent resonance series. The statistical scatter in the
B, values for v>22, £3.2X 10~ cnrl, could give rise
to differences of F0.6 cm™ between vibrational en-
ergies calculated from the J,=49 and 22 series. How-
ever, the disagreement actually found is always less
than 0.15 cm™ for v< 74, while for 74<v<82, where
the rotational data is least reliable, the spread never
exceeds 0.5 cm™,

Vibrational cnergies obtained by gapplying expres-

sions (4) and (5) to the data were fitted to a poly-
nomial in (v+3%) to yield the customary representation
(we, weer o+ etc.). An iterative procedure was used
to obtain a single self-consistent set of constants
which reflected. the higher accuracy of the green-line
data used for v<22. The approach was similar to that
used for obtaining the B, representation. The coeffi-
cients of terms of order up to five were based mainly
on the v<22 data and those of order six to nine
mainly on the uv data (22<v<82). In addition, an
external constraint® was applied to force the vibra-
tional constants to yield roughly the known dissociation
limit.? :

The final expression .obtained for the vibrational
energies is® (in cm™) '

G(v) = 214.5481 (v+}) — 0.616259 (v+1)?

- 7.507X 1075 (v4-§)*— 1.263643 X 104 (v+} )
+6.198129X 108 (v4-4)5— 2.0255975X 107 (v-+4 ) *
+3.9662824 X 10 (v+3)7— 4.6346554 X 1011 (¢ 1)8
+2.9330755X 103 (v+3 )~ 7.61000X 10~ (v-+1) 0,

(6)

This fits the 30 green-line data for v<22 with a
standard error of £0.004¢ con~?, and the 146 (uv) data
for 22<»<82 with a standard error of =0.14 cm™,
within the ranges of the respective experimental un-
certainties. However, the extrapolated eigenvalues are
probably not reliable much beyond v/85.

RKR POTENTIAL FOR GROUND STATE I,

RKR calculations reported here were performed
using a slightly modificd version of the computer

. program reported by Zare This program was pre-

viously tested and found to yield a potential which
reflects the input vibrational energies and rotational

B,’s with an accuracy better than that warranted by

the data used here.” Values of the physical constants,
taken from Cohen and DuMond,” yielded

7/ (4mcu) = 16.85749/u ((Afem),

where u=063.4377 amu® is the reduced mass of the‘

two nuclei.®®

A check of the plausibility of the potential by
evaluating its first and second derivatives over the
range of the inner turning points® showed the sccond
derivatives to be negative for v> 56, This must be

“due to inaccuracy in the B, constants in this region,
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TanLe III. RKR turning points (in angstroms) for ground-state I,. The encrgies G(») are in em™,

“sccmecmes

15

9 G(v) Ri(v) Ry(v) v G(z) Ri(v) R;(v)
4] 107.120 2.61784 . 2.71750 30 5 932.00 2.3689 3.2176
1 320.435 2. 58504 2.75807 32 6 274.60 2.3618 3.2443
2 532.515 2.56348 v 2.78741 34 6 610.06 2.3550 3.2713
3 743.356 2.54653 2.81214 36 6 938.78 2.3487 3.2986
4 952.952 2.53228 2.83419 38 7 260.56 2.3427 3.3204
5 1 161.296 2.51983 2.85444 40 7 875.21 2.3370 3.3546
6 1 368.379 2.50871 2.87339 42 7 882.51 2.3316 3.3835
7 1 §74.194 2.49862 2.89134 44 8 182.20 2.3265 3.4132
8. 1 778.731 2.48933 2.90850 46 8 474.05 2.3217 3.4436
9 1 981.980 2.48072 2.92502 48 8 757.78 2.3171 3.4751
10 2 183.932 2.47208 2.94101 50 9 033.11 2.3128 3.507¢
11 2 384.577 2.40511 2.95655 52 9 299.72 2.3087 3.5413
12 2 583.905 2.45796 2.97172 54 9 557.29 2.3049 3.5765
13 2 781.904 2.45119 2.98656 56 9 805.50 2.3012 3.6133
14 2 978.564 2.44473 3.00113 58 10 043.98 2.2978 3.65206
15 3 173.874 2.43857 3.01545 60 10 272.39 2.2946 3.6928
16 3 367.822 2.43268 3.02958 62 10 490.37 2.2916 3.7360
17 3 560.397 2.42702 3.04352 64 10 697.57 2.2888 3.7819
18 3 751.586 2.42159 3.05732 66 - 10 893.66 2.2862 3.8310
19 3 941.377 2.41635 3.07099 68 11 078.35 2.2837 3.8837
20 4 129,756 2.41130 3.08454 70 i1 251.40 2,2815 3.9406
21 4 316.709 2.400643 3.09801 72 11 412.60 2.2794 4.0021
22 4 502.223 2.40172 3.11140 74 11 561.84 2.2775 4,0689
24 4 808.87 2.3927 3.1380 76 11 699.11 2.275¢ 4.142
26 5 229.58 2.3843 3.1645 79 11 882.75 2.2734 4,264
28 5 584.20 2.3764 3.1910 82 12 040.40 2.271; 4.406

- 0.00016 A

since they largely determine the absolute positioning
of the pair of turning points for a given level, while
the distance between a pair of turning points depends

only on the relatively more accurate vibrational
" spacings. However, a good approximation to the po-

tential may still be obtained by adding the relatively
more accurate differences between the pairs of turning
points [Ry(v)—Ri(v)] to inner turning points ob-
tained by extrapolation from the region in which the
two derivatives are acceptable. Consideration of the
derivatives of the repulsive branch of the potential
for 22<v<50 showed that the best (integer) inverse-
power fit to it corresponded to R™12% The expression
A/R2+B was then fitted to the computed inner
turning points at v=49 and 50, yielding

V(R) =2.921166X 10¢/R12—3438.00.  (7)

Expression (7) was then used with expression (6) to
generate “extrapolated’” inner turning points Ri(v) for
v>50 (i.e.,, R<2.313 A). The differences between the
extrapolated and RKR turning points increased from
at v=00, to 0.0020 at v="70, to 0.0094 at
v=82. Because of the magnitude of this correction
and the steepness of the potential, the probable errors
in the resulting inner turning points are insignificant.

Table III gives the RKR turning points computed
from expressions (4) and (6) for 0<2<50, and the
adjusted turning points for v>>50 obtained by com-
bining the extrapolated Ry(v) values with the com-
puted quantities [R:(v)—Ri(v)]. The differences
[Rz(v) — Ry(v)] depend solely on the vibrational spec-
trum and have approximate error bounds of =:0.8X

105 & for levels v<22, and bounds ranging from
+0.0003 to =0.003 & as v increases from 23 to 82.
On the other hand, the average of a pair of turning
points 3[Ri(v)+R(v)] depends mainly on the less
accurately known B, constants. These averages have
approximate error bounds of =0.0009 A for v<22,
and bounds ranging from 0.013 to 4-0.02 A for v in-
creasing from 23 to 82.% These bounds were obtained
by applying the statistical standard errors of the fits
of (4) and (6) to the data, to the expressions derived
in the Appendix. It is important to note that the
accuracies of the turning-point differences are signifi-
cant, despite the rvelatively large uncertainties in the
average values.

Consideration of the derivatives of the outer branch

of the RKR potential for v=80-82 shows that in this
region it is converging to the dissociation limit as
R-34% On the other hand, the theoretical asymptotic
long-range behavior of the potential for this state is
R%2 Therefore, the experimental results do not ex-
tend far enough to either confirm the long-range B¢
behavior or yield a value for the (g%

DISCUSSION

Vibrational energies generated from expression (6)
differ significantly from those obtained by Verma in
his original analysis of the uv spectrum.! His level
spacings (see Table VI of Ref. 1)® yield energies rela-
tive to v=0 which are too high. The error ranges
from 0.2 cm™ at v=10 up to 6.6 cm™ at v=>54 and
then decreases to 4.3 cm™ by v=_82. Verma appears
to have based his vibrational spectrum on the spacings
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Tantk IV, Com%mson of calculated and observed disngreements with Zare’s? turning points. In all cases, § represents |

ubtmctmn of t

¢ present value from the previous vatue. AG..1s2 and B, are in em™, while lengths are in angstroms.

109 Re(2) — Ra(v) ]

108 38 Ra(v) 4R (1) ]

D “8(AGyips) 108%8B, From (Al) and (A3) Obs From (A2) and (A4) Obs
9 0.07 —2.4 .8 0.0 8. —2.2
i9 -0.17 -—i.0 -2.9 . R 4, 0.3
29 -0.24 —2.4 g 4.3 10. i.4
39 -0.20 -—6.9 - .3 —7.5 31, -1.6
49 -0.14 —14.2 -~5.9 -6.4 65. —-3.4
59 0.2 —23.2 12.5 - 1.0 i25. 9,7
69 ~0.02 -31.9 —-i.8 0.6 200. 60.0

of the 17 pairs of adjacent levels in the P branch of

" resonance series J,=49. On the other hand, the present

analysis fits 176 vibrational energies directly. The dis-

C crepancies between the results of these two approaches

shows how a relatively large error can accumulate
when attention is focused on the individual vibra-
tional spacings, rather than on the vibrational ladder
as a whole. These errors in the previously reported

- vibrational spectrum! are reflected in the previous RKR

potentials'*® in two ways. First of all, the differences
[R2(v) — Ry(v)] are slightly in error (see Appendix);
and more seriously, the turning points are correlated
with incorrect energies.

The shift of the computed turning points above
v=50, in the present work, has implications with
regard to the accuracy of the B,, D,, and G(v) rep-
resentations [expressions (4)—(6)]. These shifts in the
turning points actually correspond to small changes
in the B, values in this region. To be entirely con-

. sistent, new B, values corresponding to the shifted -
~turning points should have been derived and applied

to yield new D, values and vibrational energies. The
maximum effect, occurring at v=_82, would be a de-

crease of 1.04X10* cm™! (0.5%) in Bg, and a con-

comitant decrease of 10X 10~ cm! (199) in Dg and

- increase of 0.18 cm™! in G(82). However, aside from

‘the change in Dy, these changes are effectively within.

“the statistical standard error of the representations,

. " and their effect on the turning point differences .
" [Re(v) — Ry(v) ] will be well within the stated bounds.

. Furthermore, these errors will drop quite sharply for

_lower vibrational levels and should be completely

negligible for levels below v74.
Rotational B, constants generated from (4) also

-, differ with those reported previously.l” While the

discrepancies are quite small for the lower levels,
they increase steeply above v60. At v=_82 the present
B,=0.02190 cm™ is 1.49% larger than Verma’s value
and 5.7% larger than that of Rank and Rao. The

- main reason for this disagreement is the fact that
_.the previous analyses used significantly smaller esti-
mates for the D, constants for the hxgher levels, while
. basing their B, values in this region solely on the
Jpw 87 doublet splittinga, whlch are relatively t.hé '

L)

."

most sensitive to errors in Dy While the preceding -

paragraph suggests that the ptfgsent B,.g is too large

by ~0.5%, it will still be moge accurate than values

yielded by the previous analyses.
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APPENDIX: ACCURACY OF RKR
TURNING POINTS

RKR turning points for a J=0 potential curve are

cbtained from the spectroscopxc data through the

expressions
10=(=)" [ tow-6ern i
= {[R () - RO
s =(22)" ] B.[G(:) - G(x) T da
= HIRO - [RO) T,

where B, and G(x) are the rotational constant and .
vibrational energy for level x. Hence, to a first ap-
proximation, errors SE, in G(x) yield an apparent’

value of f(v):

<41rc,u) j [G(”) G(x)—3E,JV2 dx

i” <G(v)6E:;(x) }%[R?-(”)—R:(v)],

Similarly, combining this effect with errors §B, in the |

rotational constant B,, the apparent value of g(v) is

4 12 o a
(“l;fﬁ) j:_m (B o+-88,) [G(v) ~ G (%) — S, TV dx -

{ (G 2<G(v)"~G(x)>}

S IR -[RGYTY

4

o g
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The average of a pair of turning points is
30R(v) 4 Ra(2) J=f () (1S (0) g (0) 1],

where the portion in parenthesis is dominated by the
last term. Therefore, the errors in the difference and
average of the turning points calculated for level » are

8[R(v) = Ri(2)]
NLRE/[G(0) -G () ]) [Re(v) = Ri(v) ], (A1)
and
$0[R\(v)+Ro(v) ]
—3(3Bs/B.) S[R1(v) +Re(v) ] (A2)

In cases where the errors 8F, and 8B, are small, the
average values in (A1) and (A2) may be replaced by

(E./[G(v) = G(2) = —8(AGo-112) [AGoape,  (A3)

and
(3B./B:)~8B,/B.. (A4)

Also, approximate turning point error bounds are ob-
tained if the numerators on the right-hand sides of (A3)
and (A4) may be replaced by (3E.) and (8B;).
Expressions {A1)-(A4) were tested by comparing
the turning points calculated in the present work
with those reported by Zare® The latter were cal-
culated using essentially the same computer program
as was used here, and are probably the most accurate

previous results.®® However, Zare utilized Verma’s -

reported vibrational spacings and B, representation
which are believed to be slightly in error (see Discus-
sion, above). The comparison is shown in Table IV,
For the differences [Ry{v) —Ry(»)] the agreement is
quite good except for v="59 and 69, and there the dis-
crepancy is anomalously large only because 6(AG,—12)
changes sign at v=33 and at v=08. On the other
hand, there is no readily apparent reason for the
relatively large discrepancies between the calculated
and observed errors in the turning point averages,
other than the fact that Eq. (A4) is a relatively much
worse approximation than is Eq. (A3). )
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were used. On the other hand, the uv data for <22 were omitted
from the analysis when the vibrational energies were being
obtained.

(135C93 C. Kiess and C. H. Corliss, J. Res. Natl. Bur, Std. 634, 1

B R. ]J. LeRoy and G. Burns, J. Mol. Spectry. 25, 77 (1968).

% The numbers of significant digits in the constants were chosen
so that Eq. (6) would reproduce energies up to 7=82 with 2
precision of 4-0.01 cm™, and energies up to »=22 with a precision
of 0.001 cm™,

% R. N. Zare, University of California Lawrence Radiation
Laboratory Rept. UCRL-10925, 1963.

® A given RKR potential may be tested by substituting it
into. the radial Schrodinger equation, solving exactly to get the-
vibrational energies G(v) and expectation values {z] R™*|#),
and comparing these to the energies and B, constants used as
input in the RER computations. Zare tested his program in this
manner® using Verma’s results for the ground state of I as the
test case. He found that for the first thirty levels, the deviations
of the vibrational energies were <0.09 cm™, while the deviations
in the B, values were <1.X10"¢ cm™.

¥ E. R. Cohen and J. W. M. DuMond, Rev. Mod. Phys. 37,
537 (1965).

% [Tandbook of Chemistry and Physics, R. C. Weast, Ed.
(Chemical Rubber Publ. Co., Cleveland, Ohio, 1966), 47th ed.

* Using incxact values of the physical constants can have a
real effect on the accuracy (Lhrougg not the precision) of the RKR
calculation. It was recently shown [R. J. LeRoy and R. B, Bern-
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, See Seelion 5,
stein, J. Chem. Phys. 49, 4312 (1968;3 that for the inverse
problem of obtaining eigenvalues {rom a given potential, different
authors obtained results differing by up to 0.7 cm™ for the eigen-
states of H,, on this account. Furthermore, use of the atomic
reduced mass for Hy rather than the nuclear reduced mass
introduced errors of over 6. cm™L

# The potential was fitted to the expression 4/R"--B.
3 The actual errors in the [ R (v) 2t Ry(v) ] values are probably

- somewhat smaller than is indicated by these bounds. The results

in the Appendix suggest that this may be especially true for the

~average values [ R:(v) + Ry (v).].

”T%e previously reported ®experimental” C; values!$ were

MOLECULAR CONSTANTS OF GROUND-STATE IODI}NE

18
2689

based on the data for the levels which have recently been re-
assigned to the 0,%(*IT) state. Furthermore, even ignoring this
reassignment, they appear to have béen rather inconsistently
obtained. Verma' obtained the asymptotic Cs from his RKR
curve in the interval 4.6<R<6.4 A, while his potential for
0.4<R<88 A converges significantly more slowly than his
Cs/ K% On the other hand, the deviation between the observed
(RKR) and calculated (based on their Cs) curves of Richards
and Barrow* shows that their RKR potential has distinctly sharper
curvature than is explained by their Ce.

# As reported previously,® the G(v) values given in Table VII
of Ref, 1 are all g em™* too small.



2.3 LONG-RANGE POTENTIALS OF Brz(B 3H€u) AND 022(B BH;U) FROM COMBINING

RKR RESULTS WITH THEORY | T

Improved RKR potentials for the B(3H ) states of Br2 and 022"

extending to within a few cm -1 of the dissociation limit, have recently |

beep caiculated by Coxgn} They are cémbined-here with ﬁhe theoretical

C5 potential constants fo yiél@’estimates of the C, constants for ﬁhese;

states. The approach used‘is?analogaus to that applied by Stwalley to

‘ the ground (X Z ) state of Mgz 2
It is theoretlcally known that for the B( Heu)—state halogens the

long range potentlal may - be expanded as: 35

6

5 .
VR) = D - Cg/R™ - C/R° - GCg/R° - ... (1)

Values of the 05 constantis may be readily calculated for most species,5’7’8’“

and those for the states in question are given in Table L. Like the
Cs's, the CG and 08 dispersion coeffipigﬁts‘for these mélacular statés
ﬂére also almost certainly pbsitive (éttracﬁive), although they are much
harder to obtain theo:etically.lo A question faised by the use of

Eq. (1) is whether the turning points considered lie at sufficiently‘
large internuclear di%tances for it to be valid. This point has been

~ discussed by Stwalley in relation to ground state M.gz.,2 He pointed out
that for the b(BZ:) state of HZ’ Eq. (1) breaks down for R < 5 X )

and he suggested that it should not be used in this region for any

_diatomic. Assuming his criterion is sufficient, the present treatment



TABLE I

Asymptotic potential coefficients of the B(Bﬂgu)—state halogens.

cy [em™ T 277 ¢ [em L R67 P
(theoretical)® ~ (empirical)c
¢t 1.44 x 10° 0.42 (+ 0.02) x 10°
Br, 2.39 x 10° 1.01 (+ 0.24) x 10°

a) See Footnote 7 .
" b) The uncertainties here represent 957 statistical confidence
intervals on the slopes of the lines through the highest four points.

¢) From Figs. 1 and é,

— — — - - — — — —

is viable, since the outer RKR turning points for the levels considered
all lie in the region 5.5 <R < 9.5 &%

It has recently been shown12

that the distribution of highest
observed vibrational levels for each of the B-state halogens corresponds
to the outer branch of tﬁe potential in this region being dominated

by the leading (R—s) term in Eq.(1l). On the other hand, the turning
points in question are not particularly large (R < 9.2 X) so that it
seems quite possible that some of the higher-power terms also contri-
bute significantly. This would appear to suggest a direct least-squares
fit of the outer turning points to Eq.(l); however, this approach is

not advisable for a number of reasons. One of these is the

uncertainty as to how many of the terms in the expansion of
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Eq. (1) should actually be retained in a‘given case. This difficulty

is accentuated by the fact that the competing powers are fairly similar,
so that in the absence of data spanning a very wide interval, relatively
small errors in the turning points could grossly distort the apparent
relative contributions of the different terms. A more serious problem
is that the outer turning point for the highest observed level is rela-

13

tively much less accurate than those for somewhat deeper levels, thle
having a dominant voice in the determination of the relative importance
of the contributing terms.

In the present case the difficulties inherent in a general least-
squares £it to Eq. (1) may be avoided because accurate theoretical C5

constants are known (see Table I),5’7’8

Following the approach
Stwalley applied to ground-state Mgz,2 plots of {ﬁ(v) + CS/[Rz(v)]S}
Vs [Rz(v)ﬁ—6 were made, where E(v) are the energies and Rz(v) Coxo;'sl
outer RKR turning points for the highest observed vibrational levels

of B-state Br2 and 022. These are shown in Figs., i and 2.14 Considera—
tion of Eq. (1) shows that the limiting slopes of these plots yield

the 06 coefficients; the values thus obtained are listed in Table I
together with the C5 coefficients on which they are based. In both
cases these slopes were constrained to yield the dissociation energies
obtained in Refs. (6) and (12), since the plots did not appear capable
of yielding more reliable values. In particular, a best straight line
through the four highest points for Br2 in FPig. 2 wouid vield an~esti—
mate of the dissociation energy significantly larger than that obtained
in Ref. (12) when the R-5 term was ignored and the potential assumed to

be purely R_6.18 This is quite unacceptable, and suggests that there
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strained to have its intercept at the previously obtaineds’ 2 value
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13,19

are small errors in these RKR turning points. As expected, the

points for the deeper levels fall below the lines in Figs. 1 and 2,
indicating the increasing importance of the R_8 and‘other terms.

In addition to the inherent interest in the 06 constants in Table I,
a most significanf feature of the present results is in the ease with
which they were -obtained. While this is due in large part to the sim-

plicity of calculating theoretical C5 coefficients,5’7’8

it also attests
to the utility"of‘Stwaliey's2 graphical method. These results also have
implications concerning the method presented in Chapter 3, and hence

will be discussed further in Section 3.3 .



FOOTNOTES

.l. J. A. Coxon, "The Calculation of Potential Energy Curves of Diatomic
Molecules: Application to Halogen Molecules", J. Quant. Spectry.
Radiat. Transfer (to be published).

2. W. C. Stwalley, 'Long-Range Analysis of the Internuclear Potential
of Mgz", Chem. Phys. Lett. (1970, to be published).

3. The derivation of this expression is discussed in a number of
sources, including Refs. (4-5). The lowest-power term contributing
to Eq. (1) is determined by the nature of the atoms to which the
molecular state dissociates; a summary of the theoretical rules
governing this is given in Appendix B of Ref. (6).

4. J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory

of Gases and Liquids (John Wiley and Sons, Inc., New York, 1964),

Part III.

5. T. Y. Chang, Rev. Mod. Phys. 39, 911 (1967).

6. R. J. Le Roy and Rs B. Bernstein, J. Chem. Phys. 52, 3869 (1970); .
see Section 3;1.

7. It was shown by Knipp8 that interatomic 05 coefficients may be
expressed as the product of an angular factor and the expectation
value of the square of the electron radii in the unfilled valence
shell of each of the interacting atoms. Knipp8 also presented
values of these angular factors and approximate expectation values
for a few systems. Recently, Changs extended the tables of angular
factors considerably, and Fischer9 reported Hartree-Fock values of

the necessary expectation values for all atoms from He to Rn.
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11.

12.

13.
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J. K. Knipp, Phys. Rev. 53, 734 (1938).

C. F. Fischer, Can. J. Phys. 46, 2336 (1968).

The second-order perturbation theory expressions for interatomic
dispersion forces4 show that in the present case, where the mole-
cular state dissociates to one ground (2P3/2) and one excited (2P

1/2)

atom, there is only one repulsive contribution to each of the C6

and C8 terms. Its magnitude depends on a matrix element coupling

the 2P3/2 and ZPl/2 atomic statesj this is known to be very small

, 11
because of the forbiddenness of this atomic transition, and it is

certain to be overwhelmed by the contributions from terms correspoéonding

to allowed transitions to higher excited states.

a) R. H. Garstang, J. Res. Natl. Bur. Std. (U.S.) 68A, 61 (1964);
b) R. J. Donovan and D. Husain, Chem. Rev. 70, 489 (1950).

R. J. Le Roy and R. B. Bernstein, '"Dissociation Energies and Long-
Range Potentials of Diatomic Molecules from Vibrational Spacings:
The Halogens," J. Mol. Spectry. 37 (1971, in press); see Section
3.2,

This may be seen from consideration of the two quadratures required

.. for the caleculation of a pair of turning points (see Eqs. (1-3) in

Section 2.1). The integrand of each always has an integrable
singularity at the energy of the level whose turning points are
being calculated, and hence the largest contribution to the integral
comes from this mneighborhood. For all but the highest level this
presents little difficulty, as a smooth interpolation between the

data for the surrounding levels should yield highly accurate inte—



14,

15.

16.

17.

18.

19.
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grands at these singularities. However, for the very highest
observed level, the absence of data for yet higher levels introduces
a relatively large uncertainty into this interpolation, and hence
into the resulting turning points.

A point for v = 32 was omitted from Fig. 1 because of its completely
unreasonable disagreement with the others; it would have lain

0.8 cm_l below the point for v = 31, at an abscissa of 106/R6 = 0.07.
This omission is justified on the basis of possible errors in the
RKR calculation for the highest level,13 and probable error in the
data on which the calculation was based. The only reported obser-
vation of this level is in the thesis of Richards,ls and it was not
observed in the later anaiyses of Refs. (16) and (17). The dis-
crepancy is qualitatively that expected if the v = 31-32 level
spacing used in Coxon'sl RKR calculation was too small, as is
sugéested by the fact that it is 337% smaller than that predicted

in Ref. (6).

W. G. Richards, Ph.D. thesis, Oxford University (1962).

A. E. Douglas, Chr. Kn. M¢ller, and B. P. Stoicheff, Can. J. Phys.
41, 1174 (1963).

M. A. A. Clyne and J. A. Coxon, J. Mol. Spectry. 33, 381 (1970).
This suggested a Qissociation energy only 0.5 cm_l higher than the
best estimate (the latter corresponding to the assumption of a ﬁure
Rm5 potential ta.il).12

This is also suggested by the scatter in the points, and would not be
surprising in view of the interpolations Coxon1 had to perform be-

tween data for different isotopes with markedly different accuracies.
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3. DISSOCIATION ENERGIES AND LONG~RANGE POTENTIALS FROM THE VIBRATIONAL

LEVEL DISTRIBUTION NEAR THE DISSOCIATION LIMIT

While the RKR method (discussed in the previous chapter) is the
most accurate way of determining the bowl of an attractive potential
curve, it has definite limitations. One problem is that accurate
turning points for a given level may be obtained only if both the
energies and rotational BV constants are known for all of the deeper
vibrational levels of the given state. This restricts consideration to
cases for which these data are available about the potential minimum,
and means that in most other cases the curves obtained may not extend
very close to the dissociation limit. Another drawback of the RKR
method is that it implicitly includes no simple way éf accurately
placing the dissociation limit. This is fairly serioﬁs;vas the dig—
sociation energy is perhaps the most.interesting.single property of a
potential well.

This chapter presents a new method which yields more accurate
values of molecular dissociation energies than were previously obtain-
able. It also yields an estimate of the long~-range ﬁotential téil3
and predicted eigenvalues for vibrational levels lying above the highest

one observed.
3.1 DERIVATION AND DEMONSTRATION OF THE METHOD

This section is reprinted from the Journal of Chemical Physies,

Volume 52, pp. 3869-3879 (American Institute of Physiésg New York, 1970).
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Reprintcd from THE JournaAL oF CrEMICAL Prysics, Vol. 52, No. 8, 3869-3879, 15 April 1970
Printed in U. 5. A,

Dissociation Energy and LOng—Range Potential of Diatomic Molecules from Vibrational
Spacings of Higher Levels™

RoserT J. LEROY AND RicHARD B. BERNSTEIN

Theorctical C/zcmislrj Institute ond Chemistry Department, University of Wisconsin, Madison, Wisconsin 53706
(Received 12 December 1969)

An expressxon is derived which relates the distribution of vibrational levels near the dissociation limit
D of a given diatomic species to the nature of the long-range interatomic potential. in the region where
the latter may be approximated by D—C,/R" F1ttmg experimental energies directly to ghis relationship
vields values of D, 5, and C,. This procedure requires a knowledge of the relative ener ’{es and relative
vibrational numbermg for at least four rotationless levels lying near the dissociation Jimit. However,
it requires no information on the rotational constants or on the number and energies of gle deeply bound
levels. D can be evaluated with a much smaller uncertamty than beretofore obtainable { \m Birge-Sponer
extrapolations. The formula predicts the energies of all vibrational levels lying abov§ the highest one
measured, with uncertainties no larger than that of the binding energy of the highest level. The validity of
the method is tested with model potentials, and its usefulness is demonstrated by application to the precise

data of Douglas, Mgller, and Stoicheff for the B 3lg,*

I INTRODUCTION

For more than four decades the Birge-Sponet’ ex-
trapolation procedure has been employed, with only
minor modifications,?® for the determination of values
for dissociation limits of diatomic molecules from ex-
perimental vibrational spacings AGuiyz* One of the
great virtues of this method is its simplicity, as exempli-
© fied by the exact linear relationship between AG.ip
and v for a Morse potential. In this case, AG(v)?®
extrapolates to zero at vp=[(w./2w.x,) —%], where up
is the noninteger “effective” vibrational index of the
dissociation limit.* For more realistic potentials it is
well known that the Birge-Sponer (B-S) plot shows
positive curvature in the region just prior to dissoci-
ation, due to the dominating influence of the long-range
“tail” of the interatomic potential?~*¢ Graphical ex-
trapolation to the dissociation limit is therefore less
reliable, and uncertainties of several cm™! are common
in values so obtained for the dissociation limit D,

The WKB-based method to be described takes ad-
vantage of the dominating influence of the long-range
. portion of the potential on the uppermost vibrational
levels, It requires only the energies and relative vibra-
tional numbering of four or more rotationless levels
lying close to the dissociation limit D (i.e., less than
A210% of the well depth below D). These are fitted
to an analytical approximation formula, yielding ‘‘best”
estimates of D and of the long-range interatomic po-
" tential. Although a proper RKR analysis yields a much
more accurate estimate of the potential” it is much
more restrictive than the present method since it re-
quires as additional information the energies and B,
constants of all levels below the one whose turning
points are being calculated. Furthermore, the RKR
approach provides no estimate of D or of the energies
or even of the total number of vibrational levels above
‘the highest one observed, and offers no direct means
of extrapolating beyond the observed levels.

state of Ch.

Il. METHDD
A. Derivation

The starting point of the present treatment is the
first-order WK B quantum condition for the cigenvalues
of a potential V(R):

(2“) 12 /ﬂz(ﬂ)
wh Ry(»)

where E(v) is the energy of level v and Ry (v) and Ra(v)
are its classical turning points: E(v) =V[Ri(v)]=
V[R:(v)]. Although the allowed eigenvalues corre-
spond to integer v, it is convenient to treat » as a con-
tinuous variable.

Differentiation of Eq. (1) with respect to £i(v) yields

dv R 2(v)

. -1 1 142 1/2

5= 7w [ LB -V (R TR. (2)
Consideration of the nature of the integrand in Eq. (2)
suggests that the integral will be very nearly unchanged
if the exact V(R) is replaced by an approximate func-
tion which is accurate near the outer turning point
Ry(v). This is illustrated in Fig, 1 for the case of a
model potential, chosen to be of the Lennard-Jones
(12,6) form.® Using the asymptotic approximation
for V(R),

pb )= [E(s) =V (R)J#dR, (1)

V(R)=D-C,/Rn, (3a)
where D is the dissociation limit of the potential, C\ is

given by
E(v) =D~Cu/[Re(v) . {3b)

Changing the variable of mteg,mtum to y= Re(‘l}) /R,
Eq. (2) becomes

di C i/n
-1 U2 e
dE(r) = (7)™ (3n) [D=E(v) Jpla+in

R2/Ry .
X j[ y (yn,,_ 1)""2dy.
X .

3869
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Fic. 1. Exact integrand (solid curves) of Eq. (2) for three

-~ Jevels of a “standard” 24-level LY (12,6) potentlal 8 The dashed
* .. segment of curve near Ry is the approximate integrand [E()—
-5 (1=2/R8 T2 for y=20. The dashed vertical lines are the turning
* . points, where the exact integrand is singular.

In the limit Ry(2)—0 [i.e, Ra(v)/Ri(v)—>w7] this

integral is well known.® This yields an approximate

" analytical expression for dE(v)/dv near the dissoci-
-+ ation limit:’

dE@) __ (2\ET(+1/n) n wb) o
— (”) --_-——-——F( Y )C,.”“ED E(v) JHwt22n]

= K [D—E(s)Ji+20l, - (4)

“where K, is an obvious collection of constants and T'(x)

is the gamma function.” Note that dZ(v) /dv is closely

" trelated to the conventional Birge-Sponer ordinate’;
~.| £gs units are used throughout.

Equation (4) shows that for the ‘uppermost vibra-
tional levels of a given diatomic, species, the spacings
depend only upon the long-range potential parameters

D, n, and C,. Thus, for electronic states with the same
~ long-range potential, B-S plots for levels near D will
* be precxsely superimposable upon shifting of their ab-

scissa (v) scales. This result is discussed further in

. Appendix A,

- For gets of vibrational ievels which can be described

by Eq. (4), the curvature of the B-5 plot must be
. positive since?

PL(s) Jdip=[ (n+2) /n¥]K AL D— E(s) Pin-1t2
=d?AG(v) /dv? ' |
AP (AGo—yjst AGoyap) /di7]. (5)

" For n=0, this curvature is a constant; for #>6, it in-

- creases with increasing v, becoming infinite at the dis-
‘sociation limit; for #<6, it decreases to zero at D.

- Positive curvature of a B-S plot for a set, of experi-

" mental vibrational energies is therefore a necessary
- (though not sufficient) condxt!on for the apphcablhty

of the present method.

In practical applications it is most convement ta

30
BERNSTEIN

emplnv the integrated form of Lq (4),"* which for
n£l is
E(v) = D—[(vp—v) 11, e/l (6)

where H,=[(n—2)/2n]K, and up is an integration
constant.>® For n>2, vp takes on physical signif-
cance as the effective (neninfeger) vibrational index .
at the dissociation limit, progided that the potential
is well approximated by Eq. 53) from the highest ob-
served levels up to D. In thigicase, truncation of vp to
an integer yields the vibratipnal mdex of the upper-
most rotationless level, say: Np. It is interesting to
note that the “natural” dependent and independent
variables in Eq. (6) are, respectively, the binding en-
ergy D—E(v) and the vibratipnal “index” counted
down from D (for n>2). Appfications of the present
method are based upon the #itting of experimental

energies E(v) to Eq. (6) to yield values of the four-

quantities D, n, C,, and 7p. This is discussed further in
Secs. I1.D and I11.

B. Special Cases

While the potentials considered above (#>2) are of :

most practical interest, results for n<2 will be noted.
Here the integration constant p must be smaller than
any of the v values of the ievelg being fitted (and may

even be negative) since K, ig positive and (#—2) is -

negative [see Eq. (6)7. For m:l Eq. (6) becomes
D—E(v) = (/203 C*/ (v—1p)?,

which is the exact quantum result for a pure B
potential if one sets yp=~ 1. For n=12, integration of
Eq. (4) yields

D—E(2) =[D~E(0) ] exp[ ~whn(2/uC) . (7)

Here the assignment of any given level as v=0 is
arbitrary since the levels cannot be enumerated either

down from D or up from a lowest level.® Equation.

(7) is identical to the exact quantal result' except that .

it omits the (usually small) efiect on the apparent Cy /'~

constant of the Langer correction'® to the WKB inte-
gral, Eq. (1),

"The present approach can also be applicd to poten-
tials whose long-range tails are'not of the inverse-power
form. For example, consider any potential with an
attractive exponential tail,” such that at large R,
V(R)=D—Ae*E, Applymg the same approximations
[replacing the full potential in Eq. (2) by its tail and

.letting Ry—07], an expression analogous to Eq. (4) is
obtained:

dE(v) (2/w) "R D— E(v) ] (é

dv  1— (/) sn{[D—EQ@) Ay )
As with Eq. (4), in this case the vibrational spacings
-near D depend only on the potential parameters (here -

D, B, and.4), and to a first approximation (ignoring
the arcsin term) they are independent of 4. Integra-
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tion of this expression yields

e

2 D—E(p)\V*] #B
+;[1-— (1—[ ) J Ty (Ip— v),:

A (2ud)

where the integration constant vp has the same physical
significance as in the inverse power (#>2) case. Upon
expanding the left-hand side as a power series in
{[D~E(v) ]/ A}, reversion of the series yields

D“ E(v) = (W6%/2p) (vp~0) 1+ (vp—v) ¥
e ], (9)

V= (2/ud)'*h8/x. (10)

 As with the inverse-power potential, the B-S plot will
show positive curvature; however here the curvature
is quite small, and to first order (setting ¥=0) it is
© zero®

This result [Eq. (9)] for potentials with an expo-
nential tail is particularly useful since it allows a
test of the approximations underlying the present
treatment. One may compare Eq. (9) with the exact
quantal results for onc realistic model potential with
an cxponential tail, the Morse potential®: Vy(R)=
D,{1—exp[—B(R—R,)]}? whose eigenvalues are given
byt

D—E(v) = (1#82/21) (vp— 1) 2=w,%s (vp—7)?%, (11)

where p is, as before, the effective vibrational index
at D. Clearly, in the limit ¥—0, the distribution of
vibrational levels predicted by Eq. (11) agrees with
that of Eq. (9). This is true despite the different wp’s,

where

which merely correspond to a change in vibrational -

numbering and a small shift in the eigenvalues (arising
from the small change in vp— Np). In effect, this merely
shifts the abscissa scale in the B-S plot. The influence
- of the short-range portion of the Morse potential is
thus merely to remove the small “correction” terms
in (p—v)¥ from Eq. (9), yielding Eq. (11). The
- value of ¥ depends on both g and the coefficient of
the long-range (attractive) exponential term in Vu(R),
A=12D, exp(BR,). Substituting the latter into Eq. (10)
and using known relations among the Morse param-
cters,* one identifies

V= (8”2/7'") (wexe/"-‘ ) ekp(“fﬁRc);
which shows that for typical diatomics Y<<1.

(12

C. Significance of Parameters and Sources of Error

Perturbation theory suggests? that near the dissoci-
ation ‘limit, the internuclear interaction may be ex-
pressed as a sum of inverse (integer) power terms in K:

V(R)=D— \Z Con/R™. (13)

LT, "
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Qver any small interval, Eq. (3a) is a close approxima-
tion to Eq. (13), if one considers # to be an “effective”
or “‘local” power which corresponds to a weighted aver-

age of the different a2 values,” e.g.,
_ > (m+DmCo/[ Ry (v) Jot
3 mCu/[ Ry(v) It

-1, (14)

In the limit v—vp, as Rg(?}) reaches the asymptotic
region, the effective noninteger;power n—, the (inte-
ger) -smallest power contnbut@n to Eq. ( 13) As long
as the potential for the statajin question is well be-
haved,” fits of Eq. (6) to dnﬁ’élent subsets of a given
energy spectrum should all ydeld essentially the same
value of D, though the “local” values of n, C,, and vp
differ slightly.

At somewhat shorter sepamtxons, exponential- -type
exchange forces replace the in¥erse-power terms in
dominating the interaction®; tgtms, the B-S plot be-
comes mmeasmgly linear for th‘c decper levels.® How-
ever, the approximations of thg present treatment are
worse for these more deeply beund levels, so only the
region dominated by the long-rdnge inverse-power terms
(positive curvature of the B~S plot) should be trcatcd
by the present method.

"Therc are two main sources of error inherent in the
approximations represented by Eq. (3). First and most
obvious is the neglect of the singularity at Ry(v) in the
exact integrand of Eq. (2) (see{Fig. 1). This omission
tends to make the estimate of the integral used to
obtain Eq. (4) somewhat small, and since the relative
magnitude of this error decreases for the higher levels,
the effect will be to yield values of both # and C, which
are somewhat too large.

The second source of error arises from the fact that
a realistic long-range interatomic potential is a sum of
attractive inverse-power terms [see Eq. (13)], in con-
trast to the single attractive term in the model L]
(12,6) potential. This means that whatever the effec-
tive inverse-power precisely at a given Ry(v) [from
Eq. (14)]; terms with higher powers contribute vela-
tively more to the potential for R<Ry(v), so that the
exact integrand of Eq. (2) is smaller than that for the
single Cn/R" function which best fits the potential at
Ry(v). This error has the opposite effect of the first,
tending to produce values of # and C,, which are slightly
too small. The former error is most serious for the
deeper levels, while the latter dominates the situation
as # [ see Eq. (14)] approaches its asymptotic value #.3

A third potential source of error arises from use of
the first-order WKB approximation [ given by Eq. (1)],
compounded by the omission of the Langer correction.!®
However the effect of this approximation is expected
to be negligible.®

Values of D, #, and C, abtained on fitting any given
set of vibrational energies to-Eq. (6) yield & “local”
estimate of the potential in the form of Eq. (3). Be-
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cause of the errors described above, this estimate of

the potential will be somewhat too deep when using

data for the deeper levels and slightly too shallow when
considering only the highest levels. This is illustrated
by the examples considered in Sec. Iil.

Next in importance to D are the power 7 and coeffi-

; " cient C, of the longest-range (fith-power) term in the
. expansion for the potential [see Eq. (13)]. The errors

in » (see above) which induce slight errors in D, may

" also weaken the accuracy of 7. However, for many
“ electronic states 7 is known from theoretical considera-

tions®; the only question is whether the levels being

" fitted lie close enough to the dissociation limit D to be

governed mainly by the asymptotic R™ (n=1i) term

.. of the potential. If this is so, it is desirable to constrain

"1 to be equal to # and employ a three parameter fit to
. Eq. (6) [or if =2, a two parameter fit to Eq. (7) ].
"+ This should yield improved accuracy in D and provide

significant values of the theoretically interesting Cy

il (n=A) and vp.

D. Implementation

In this section, a procedure is described for the
practical application of the present method to experi-
mental data in a manner intended to yield the best
possible estimates of the parameters D, 5, C,, and (for

© n52) vp. The general case of n¥£2 will be considered

first, followed by a brief discussion of the situation
for n=12,

A least-squares fit of experimental energies directly
to Eq. (6) is the most general way of obtaining the

. best values of the four quantities.”® However, since

this expression is nonlinear in the parameters, the gen-
‘eral regression problem may have no unique solution

“since the sum of squares may show local minima which

do not correspond to the best parameter values. This
problem can be avoided if the initial trial parameter
values (required by nonlinear regression procedures)

’ » are sufficiently accurate. The necessary trial values for

# and vp may be obtained from a fit to a linear expres-
sion obtained on combining derivatives from Eq. (6)%:

E'(0)/E" (v) =—[(n—2)/ (n+2) (vp—1). (15)

Holding fixed the % and vp values thus obtained, Eq,
(6) becomes linear in a new independent wvariable,

" w= {[(M—Z)/2n](pp~.g) }I2nl(n-—-2)];

E(v) = D—wkK, a1, (16)

* This yields trial values of D and K, [which gives C,

via Eq. (4)7]. The four parameter values thus obtained
are good starting approximations for the direct non-
linear fit of the experimental energies to Eq. (6)2; the
linearity of Eqs. (15) and (16) makes this approach
particularly straightforward 2

While Eq. (16). may be used only for n5¢2, Eq. (15)

.+ ig alse valid for n=2 since combining the derivatives
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of Eq. (7) shows that ‘
E'(v)/E" (v) = ~ (xh) = (3uCy) 2.

. Thus, even though vp(in=2) = oo,

lif; [(r=2)/ (#+2) Joo {is) = (xh)~* (5uCs)""2.

Manipulating Eq. (4) and ils derivatives, one obtains
simple expressions yielding trial values of D and C,:

D=E(v) —~[(n+2)/20][E'(v) F/E" (1) (17a)

and
Ku=E'(2)/[D~ E()) Jemom,  (17b)

where, as before, C, is obtaiéed from K, While Egs.
(17) are valid for all #, in pgactice they are somewhat
less accurate and more difficuit to use than is Eq. (16) .

IIl, APPLICATIONS

A. Dissociation Limit and Potential Tail from
Eigenvalues of a Medel Potential

The method is first appliedito the exact eigenvalues
of the previously mentioncd;f?(Sec. 11.A) 24.evel LJ
(12,6) potential®: V(R) =141/R"?~—2/R" (here D=1,
=6, Co=2). A B-S plot ¢f the cigenvalues of any
LJ (12,6} potential has posi{ive curvature everywhere.®?
However, as discussed in Sec. II, consideration of the
deeper levels by the present method is inappropriate,
so the following analysis deals only with the eleven
levels lying less than 109, of the well depth below the
dissociation limit [i.e., D— E(v) <0.1D,]." Throughout
this section, energies are expgessed in units of the well
depth (i.e., set D,=1), length in units of the equilib-
rium distance (i.e., set R,=1), and the zero of energy
is set at the potential minimum,

) The calculated eigenvalues® for the eleven highes\tt .
levels were smoothed by fitting them to a Sth order

polynomial in v, in order to obtain the derivatives on

| T T T Y
o—----.—--—._.._—_-—-——_-—.-‘-——.

K L J112,8) ' ,
E'(V) 2 i
E'v) s

% | ’ !

2. /:(/ -
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Yalvatd
n=957 6{/
7 /o7
- - /‘5 /// -
e /‘/
U
A ! 1 i
14 18 22
v

Fie. 2. BE'(2)/E"(v) vs v for the highest fevels of the 24-level
LJ (12,6) potential®® The broken lines have siopes corresponding
to Integer #= 5, 6, and 7 [see Eq. (15)]
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the left-hand side of £q. (15). Figure 2 shows a plot
of this derivative ratio vs v, compared with lines whose
slopes correspond [via Eq. (15)7] to integer n=35, 6,
and 7.3 A least-squares fit of these derivative ratios to
Eq. (15) yielded #=6.29 and vp=23.27 ; fixing # and

. op at these values, a subsequent fit of the eigenvalues
. to Eq. (16) yielded D=1.0—1.31X 1075 (the correct

value is exactly 1.0) and C,=3.43. These estimates of
the parameters were then used as the initial trial values

_for a nonlinear fitting of the eleven energies to Eq.

(6).%2 The parameters thus obtained were D=1.0—
1.29 1075, #=6.30, C,=3.46, and vp=23.25.

«The above fitting procedure was then repeated sev-
eral times while the deeper levels were successively
omitted. Levels in the interval vp <v<wvy were included
in a given fit; vy was fixed at 23 (the highest level)
while v;, was successively increased from 13 to 19.% In

.. -Fig. 3 the resulting parameter values (solid curves)
. are plotted against the energy of the lowest level in-
- - cluded in a given fit, E(v).

For a L] (12,6) potential fi=6, and the effective #

.at the outer turning point [from Eq. (14)] is always
* . "less than six. Thus the fact that four-parameter fits to
' Eq. (6)® always yield #>6 must be due to the first

LJ 62,6

1.00008}~

1.00004-

L0000 = = = — m o e o e e ; -2
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B0l e e e e e oyt L= SR

i p26
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s e

L 1 2 1 " 1 i
0.;2 094 0.98 0.98 1.00
Elv) '

Fic. 3. Results of fitting Eq. (6) to the vibrational levels of .
the 24-level Lj (12,6) potential 8262 The points correspond to -

fits of levels v, up to vg=23. The broken horizontal lines denote
the exact quantities i=6, D=1.0, and Cy=2.0. The “best” =6
estimate of vp is 23.353, in good agreement with the value 23.358
enerated from the analytic expression of Stogryn and Hirsch-
elder.® Points joined by solid lines correspond to four-parnmeter
fits with # being varied freely, while the others correspond to

' three-parameter fits with # held fized at the indicated values,

(Nols eddsd dn proof: The extenalon of the dotted curves for U
beyond V=20 was unintended.) .- = - ‘
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F1c. 4. Piecewise potentials constructed from three-parameter
fits (D constrained at 1.0) of the L] (12,6} vibrational energies® *
to Eq. (6).282 @, exact turning points for the specified levels;
—, segments obtained from fits; -3, exact asymptotic R
potential tail.

type of error discussed in Se¢. I1.C. To obtain more
accurate estimates of D, C,, and 9p, the above fitting
procedure was repeated with # fixed at fi=06. Levels 7z, .
to vy =23 were fitted while v, was increased successively
from 13 to 20,2 yielding the parameter values joined
by the dashed curves in Fig. 3. This procedure was
repeated with # fixed in turn af 5 and 7, yielding the
dotted curves in Fig. 3. Consideration of the different
curves for D suggests that their comparative conver-
gence (flattening) is a test of convergence to the true
value of 7.3 In general, the three-parameter fits with

" n fixed at # yield meaningful values of C,(r=%) and

vp and give better estimates of D than do the four-

~parameter fits, “Best” values of all parameters are ob-

tained from the right-hand ends of the dashed curves
in Fig. 3: D=1.0+0.13X10"5,Ce=2.01, and 7p = 23.353.
This vp value agrees well with the first order WKB
value of 23.358.%

As pointed out above, the dominant error affecting
these L] (12,6) results arises from the effect of the
singularity at Ri(v). The values of # and C, obtained
from the four-parameter fits (and the Cy values from
the three-parameter fits) are somewhat large; as ex-
pected, the error diminishes as the deepér levels are
successively dropped: .

As discussed in Sec, I1.C, the present method yiclds
values of IJ, n, and C, which provide “local” estimates
of the potential over the range of energies being fitted.
Hence, the outer tail of the potentlal may bs approxi-
mated by the results of & series of piecewise fits, Further.

)



r«.w‘.{g«;‘.-:»e,j%

- e Y VR KA i

3874 R. J. LeROY AND R. B. BERNSTEIN

Ce, (8 *TT;)

2 23 25 2 23
ad | 1]
(\\§\ |
|
@t
80— = Pt T
3 !
|
46 i1
|
{
|
20 880}- ; |
Dieni™) |
] |
so8vel | 1 :
11
1
§.4r k\\\\ { e
Cs x 107 4 ‘
{or A%) ‘\,} e I
13- ~az |-
. by %/ |
!.2}- L Il [l L [l L ] } .
- |
Ya 35.0- \{.~“~\_%\ ned ‘ 1
i [ S A
358 ! L ) i s T+_ f} [ ’
20 700. 20 750. 20 600. 20850, D
Elv} (en™)

Fic. 5. Results of fitting Eq. (6)®%® to the experimental
vibrational energies of Clz (B *fe,*). %7 The points correspond
10 fits of levels vy, up to vx=31. The broken vertical line is the
best estimate obtained for D. Points joined by solid curves cor-
respond to four-parameter fits with # varied freely, while the
others correspond to three-parameter fits with # held fized at the
indicated values,

more, since all of the pieces should correspond to the
same value of D, holding D fixed at the “best” value
obtained above should improve the accuracy of the
derived potential, particularly for the deeper segments.
To explore this point, levels v, to vy were fitted to
Eq. (6),® with D held fixed at 1.0 and vg—vr=4,
while vy was successively decreased from 23 to 17. The
resultant “local” curves are shown in Fig. 4 (only the
segments corresponding to odd vy have been included) ;
the points are the exact turning points, and in this
region are indistinguishable from the —2/R°® asymp-
totic tail. As expected, the fitted segments are some-
what too deep. However the “nesting” of the successive
segments shows the decreasing error in the fitted # and
C. as the dissociation limit is approached.®

B. Dissociation Limit and Potential Tail of Clo{ B My, *)

The method is now applied to experimental data for
the B .+ state of Cly. Douglas, Mgller, and Stoicheff?
heve reported sccusnte vibrational energies of levels
pe to 31 of thls giste, the highest observed level

lving only a few cm= below 0. A B-S plot of their
data shows positive curvature above v==11, and hence,
these higher levels may be ireated by the present
method. In what follows, the zero of energy is con-
veniently set at the lowest vibrational-rotational level
of the ground (X 'Z,*) electronic state; results are
reporied in the conventional spectroscopic energy and
length units: cm~! and angstroms.®

As in the L] (12,6) case, the vibrational energies™
were repeaiedly fitted to Eq. (6) (with four free pa-
rameters) 3.3 whije the deeper levels were successively
omitted from consideration, yielding the values of »
shown in Fig. 5. Theory indicates® that fi=35 for this
state. The fact that the fitted = falls slightly below 3
(for v2=26 and 27) is probably due to the second type
of error discussed in Sec. I1.L. Over the region where
the fitted # <35, the eigenvalile distribution is probably
dominated by the R5 term in the potential. In view of
this, the data were refitted to Eq. (6) with # held
fixed at 526298 o yield the estimates of D, C,, and vp
joined by the dashed lines in; Fig. 5. These (n=35)
values of D are also comparedito those obtained from .
analogous fits with # fixed, {respectively, at 4 and
6 (dotted curves). A comparison of the limiting
[E(v.)—D7] behavior of thefthree D curves for fixed
n supports the conclusion that the highest five or siz
levels lie in the asymptotic fi=35 region. Furthermore,
comparison of the #=35 and “n free” curves suggests
that the former gives the more reliable estimate of .
This determination of =35 for this state (in agree-
ment with theory) differs with the conclusion of Byrne,
Richards, and Horsley®; the spurce of the error in the
earlier work is discussed in Ref. 30.

The present analysis yields D=20879.75(=0.15)
em?, Cp=1.29(:0.06) X 10° jem™ A5, and 9p(n=5) =
34.90(=£0.04).® This value of D is in agreement with,
but is considerably more precise than the experimenters’
best estimate®® of D=20 880(42.0) cm™. The above
Cs compares well with the theoretical value® of 1.4,3¢10°
cm™! A5, Furthermore, the fitted value of vp implies
that there exist at least three unobserved bound levels
above v=231, Table ¥ lists the predicted level energies,
obtained by substituting 2= 15 and the above values for
the other three constants into Eq. (§).

Tt is interesting to explore the question of the accu-
racy of the D value which would have been obtained
by the present method if the data for a few of the
highest observed levels had not been available, In this
case, the effective local potential for the highest remain-

Tasie L. Calcuiated energies (in em™*) for unobserved bound
Cla (B *tpu™) levels.® )
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ing levels would not be dominated by the asymptotic
R-5 term, so general four-parameter fits to Eq. (6)
are necessary (cf. the three-parameter, n fixed at
7 fits described above). Experimental energies were
repeatedly fitted to Eq. (6), eight at a time, as the
“highest observed levels were successively dropped from
. consideration.??% Figure 6 shows the values of D so
‘obtained plotted vs the energy of the highest level
. included in a given fit E(vg).® It is noted that even if
no levels had been observed above v=20 (which lies.
~2244 cm™! below D), the present method would have
yielded an estimate of D within 5.5 cm™ of the present
“best” value! In contrast, a lincar B-S extrapolation
from v=20 yields an error in D of =69 cm,

To obtain an estimate of the tail of the Cly(B 31Ty,*)
potential curve, the data were again fitted to Eqg. (0)®
eight levels at a time, except this time D was held
fixed at the “best” value of 20 879.75 e~ In Fig. 7
the segmented potential so obtained is compared to
the RKR turning points calculated by Todd, Richards,
and Byrne '

IV. CONCLUDING REMARKS

It has been shown that the distribution of vibrational
levels near the dissociation limit of a diatomic molecule
is governed mainly by the long-range attractive tail of
the internuclear potential.® A simple approximate ana-
lytic expression has been derived for this distribution,
in terms of the dissociation limit D, the power 7 and
coefficient C,, of the effective local inverse-power poten-
tial, and an integration constant vp (which has physical
significance if #=7). These quantities may be deter-
mined via a least-squares fit of experimental vibra-
tional energies to this equation.2:22

This approach yields the binding energy of the highest
observed level with an error of at most a few percent,
which is far superior to the error often resulting from
use of the customary B-S extrapolation procedures.?

’
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FI1G. 6. D estimates obtained by fitting Eq. (6) to the energies
of levels v;, to v4,%% where vy—v;=7 and vy is varied. The
vertical and horizontal broken lines denote the best present
estimate of D, )
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I're. 7. Piecewise potentials constructed from three-parameter
fits (with the constraint D =20 879,75 em™!) of the experimental
vibrational energies® of ClL(B *l.*) to Eq. (6).%% O, RKR
turning points for the specified levelsiyy —, segments obtained
from fits. :

It also leads to a determination of the power # and
coefficient C, of the asymptotically dominating lowest-
power term in the inverse-power expansion for the
potential; the results for Cly(B 3y,*) accord well with
theory® In addition, one obtains an estimate of the
outer branch of the potential over the range of the
highest levels, albeit less accurate than that obtainable
from an RKR potential.” However, the present method
is much less restrictive in its data requirements and
hence, may be applied in many situations where the
RKR approach cannot. Here the only restrictions on
the input data are that the levels must lie near the
dissociation limit D, and that their B-S plot show
positive curvature.? ‘

A useful additional feature of the present method is
its ability (when #=%) to predict the energies of all
unobserved levels lying above the highest observed
level. : .

The main alternative methods of obtaining estimates
of D from spectroscopic data are through usc of the
less accurate B-S extrapolation (referred to earlier) or
from the limiting curve of dissociation (LCD).®4 In
the latter case, D is deduced by extrapolation to zero

" J of plots of the uppermost observed rotational levels

vs J(J+1). A large uncertainty in D is introduced by
the problem of determining the breaking-off point Jiax
for each »; this is particularly important for the vi-
brational levels predissociating at small J, closest to
the intercept of the LCD at D [eg., see the case of
Bry (B ®He*) discussed in Ref. 30]. It appears that the
LCD method is less reliable than the present one,
Alternative spectroscopic approaches to the deter-
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mination of # and C.(n=7) are the standard RKR
procedure and the predissociation method of Bern-

. stein.®® Difficulties- in the use of the former are dis-

cussed in Ref. 30. The latter has been found to yield
reasonable results for a number of systems®#84%; how-
ever, it suffers from the above-mentioned problem of
determining Jmax. Furthermore, it presupposes an ac-

- curate value of D. In general, therefore, i and C,(n=7)
* values-extracted from predissociation data are expected

to be less reliable than those obtainable by the present
method.
In addition to spectroscopic methods, atomic beam

* scattering measurements yicld 7 and C,(n=1%) valucs

of roughly the same accuracy as those obtained from

- the present method.® These two techniques are essen-

tially complementary.. The present approach is best

_applied to electronic states of a strongly (“chemically”)
“bound molecule with many vibrational levels, where

the profusion of electronic states atising from the inter-
action of all but closed-shell atoms precludes the use

- of scattering measurements. On the other hand, the

shallow van der Waals potential wells normally en-

" countered with closed-shell atoms, ideal for study by

the beam scattering technique, do not support enough

" bound states to be treated by the present method.

The new approach has been demonstrated by apply-
ing it to the exact computed eigenvalues of a model
LJ (12,6) potential, and to the accurate experimental
vibrational energies of Cly(B%I,*). In companion
papers,®® it is applied to the ground (X 1Z,*) state of
Cl; and to the B %[Iy,* states of Bry and Iy, and appeais
to be of quite general utility." In addition, arguments
based on it greatly facilitated the electronic reassign-
ment of some levels of I (see the reference cited in

* Ref, 21).
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" APPENDIX A: 'BIRGE—SPONER PLOTS FOR

DIFFERENT POTENTIALS WITH IDENTICAL
LONG-RANGE TAILS

The basis of the present method is the conclusion
[Eq. (4)] that near the dissociation limit D, the density

N of vibrational levels dv/dE(v) is determined almost

solely by the nature of the outer (attractive) branch
of the potential. Thus, B-S plots of the level spacings
for different potentials with identical long-range tails
and the same reduced mass (but with arbitrarily differ-
ent short-range behavior) will be identical near the
dissociation limit, provided their abscissa (v) scales are
shifted appropriately relative to one another. This may
be tested either by using exact (quantal) eigenvalues
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for suitably chosen potentials or, with little loss in
accuracy, by the use of WKB-approximated eigen-
values. The latter procedure has been employed here.
Reduced WKB integral tables are available for LJ
(12,6) and expla, 6) (a=12.0, 13.772, and 15.0) po-
tentials.5% The L] (12,6) potgntial considered in these
comparisons® is that utilized ig Sec. 111.A; throughout
the present Appendix, all ener%?es and lengths are scaled
relative to its well depth and gquilibrium distance, and
the reduced mass u is assumegd to be the same.

For an exp(e, 6) potcntiué’with the same long-range
R tail as the model LJ (12,6),}

DR

o D

(1*56/01) ’

I‘or any choice of D,, K. (Al;-% defines the correspond-
ing R,; the appropriate B, vilue® is then oblained by
multiplying the B,(=10000.) for the model L] (12,6)
potential® by D.R? The parameters of the chosen
exp(a, 6) potentials are given in Table AL

For LJ (12,6) and exp(a, 6) potentials with a=12.0,
13.772, and 15.0, the WKB integral tables®® [based
on a reduced form of Eq. (1)] are presented as values
of ¢=(v+3)/B}? vs K=~[D—-E(v)]/D, and 6=
(J+3)%/B.. Thus®

AG(v) = (Do/B.¥)dK do. (A2)

Ignoring the Langer correctipn'® for rotationless levels
(i.e., using ¢ values for §=0, rather than for J=0),%
one may obtain dK/d¢ by direct numerical interpola-
tion.* AG(9) values thus obtained, via Eq. (A2), yield
curves B, C, D, and E in Fig. 8. The points on curve D
are the exact quantal® vibrational spacings for this
case, AG,up. Case A refers to a purely attractive
potential V(R) =D—2/R5, and Curve A was generated
by substituting Eq. (6) into Eq. (4), with n=6 and
Cs=2.% The abscissa scales bave been shifted to make
all p’s coincide. The insert on Fig. 8 shows the five
potentials of the same Cs.

The convergence of the different curves in Fig. 8 as
the dissociation limit is approached is considered good
+evidence of the practical validity of the present method.
Increases in reduced mass u and/or the depth or breadth
-of the potentials (introducing more vibrational levels)
would merely stretch the ordinate and abscissa scales
and shift the lower curves up towards Curve A (which
would remain unchanged).

(A1)

TasrLe Al Parameters of exp(a, 6) potentials having same long-
range tail as the model L] (12,6).8

Case E c B

@ 12.0 13.772 15.0

D, - 1.0 1.5 2.0

R, 1.0 - 0.953701 0.918386
B, 10 000.0 13 643.20 16 868,65
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~ APPENDIX B: ASYMPTOTIC INVERSE-POWER 4

FOR ATOMIC INTERACTIONS

This section summarizes rules for determining the
limiting asymptotic power # in the internuclear inter-
action. It is based on the references cited in Refs. 20,
41, 56, and 57, and is limited to first- and second-order
perturbation theory results. Magnetic (or relativistic)
effects are ignored; this is reasonable for R $20 a.u.,®
and levels with outer turning points at larger dis-
tances would not be readily observed.

The 7 of the lowest-order term in the inverse-power
series expansion [Eq. (13)] for the long-range inter-
nuclear potential is determined by the nature of the
two atoms to which the molecular state adiabatically

- dissociates. If the two atoms are charged, of course

#i=1; if one is charged and the other is in an electronic

"state with a permanent dipole moment,*® #i=2; if both

atoms are uncharged and in electronic states with

" permanent dipole moments,® fi=3. Another case in

which #=3 occurs is in the interaction between two

“identical uncharged atoms in electronic states whose.

total angular momenta differ by one (i.e., AL=1).

_'This interaction is a first-order dipole résonance® and

T T T T T 1 T T T

T ; Te
C?.L! ty ) ?1 (B |'|°| Lt Ll?r 1 I_Lzlcl 1 2
E¢|l!llllLllllllll 20
D?llllll*]llIllll?llllglolll]
v

Fis. 8. Birge-Sponer plots for various potentials [L.] (12,6),
exp(a, 6) and pure R™%] with the same long-range tail; the
insert shows the corresponding potential curves. A: pure R,

Ry=D~Cy/R% B, C, and E: exp(a, 6), sce Table Al; D:

V(
- “model” LY (12,6).8 All B-S curves except A were generated
“from Eq. (A2) using WKB integral tables.®#2 The points are exact

uantal level sPacings for the L] (12,6) case’ and they confirm
e accuracy of the WKB approximatioti, Curve A was obtained

. on substituting Eq. (6) jnto Eq. (4).%
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unlike the effects mentioned above, has no classical
electrostatic analog. For interactjons between a charged
and a neutral atom, fi=4 and {1=31(Z%%), where Ze

is the charge on the ion, and « the polarizability of the

neutral, The case #i==4 can also arise in the interaction

of an atom with a permanent e?ggctric dipole moment,®

and a non-S-state atom with a;;gpermanent quadrupole
moment. o ‘

In general, pairs of (unchagged) non-S-state atoms
have a- first-order quadrupolg-quadrupole interaction
which corresponds to Ai=35, and theoretical Cs values
are available for a wide range of systems.! Occasion-
ally the C; coefficient for a particular state is zero for
reasons of symmetry [e.g., for ithe ground (X 'Z;*)
state of the halogens®], and ig this case #=6. For
states which do not fall into anyfof the above classifica-
tions, #i=6 (since all interactin:g species are subject to
the London induced dipol&ind%iced dipole forces).

*Work supported by National Science Foundation Grant -

GP-7409 and National Aeronautics and Space Administration
Grant NGL 50-002-001. R. J. L. acknowledges with thanks the
award of a National Research Council of Canada Postgraduate
Scholarship.
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(McGraw-1Till Book Co., New York, 1953), Vol. 2, Sec. 12.3.
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analogous Lo ¥q. (17)
n=[4[ E" () B/ 1 (4) K" (v) ]—2,

but because of the above problem, this expression is less rcliable
than is Eq. (15).

32 Since the derivatives are obtaigpd {rom the highest 11 energics
only, they cannot be accurate atilhe end points, so only the 9
points shown on Fig. 2 are reliablg

3 Since the input data (level _glftwr;:ics) are never completely
error free, a given fit should alwajys utilize at least one level more
than the number of free parameters being fitted. If there is
significant experimental uncertainty in the energics (e.g., more
than a few percent of the level spacings), a redundancy of more
than onc level may be required to yigld meaningful values of the

parameters. i

3 In the application of this methpd to the B l,,* state of I3
the experimental uncertainty introdyces considerable imprecision
into the four-parameter fits, so that'n could not be directly deter-
mined within required accuracy gf better than =1,
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12, 273 (1967). '
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angular factor and [ {rs®){rs?)], the product of the expectation
values for the square of the electran radii in the unfilled valence
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the angular factors and approximate expectation values for a
few systems, and T. ¥. Chang [Rev. Mod. Phys. 39, 911 (1967)]
extended these results considerably. Recently C. F. Fischer
[Can. J. Phys. 46, 2336 (1968)] has reported Hartree-Fock
values of (#?) for all shells of atoms from He to Rn.

2 The erratic nature of the curve in Fig. 6 is due to the influence
of small errors in the experimental energies on the fitted values
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show similar behavior. Including more levels in each fit dampens
these oscillations.
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which are slightly small (see Sec. 11.C), there is reason to suspect
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points out that Fischer’s"! values of (#*) are based on Hartree—
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Bederson, and W. L. Fite, Eds. (Academic Press Inc., New York,
1968), Vol. 7, Chap. 3.1, p. 227. .

8 Although all of the cases thus far considered correspond to
fi=5 or 6, the present method should be even more successful
for systems with smaller # (e.g., =4, for molecules which
dissociate to ion--neutral) bccause of the relatwely higher density
of levels near D,

82 The present work utilized the corrected tables reported in
Ref. 6b. These are available as Document No. 9499 in the ADI
Auxiliary Publications Project, Photoduphcatxon Service, Library
of Congress, Washington, D.C. 20540,

8 Comparison of the ¢ valueshd? for 0=0 and 0=10~ shows
that this introduces negligible error,

¥ This was done by piceewise fitting of third-order polynomialy
in ¢. Despite the mthcr large gaps between thc tabu Mcd points
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for large ¢, this is expected to be fairly.accurate since the eigen-
value distribution for the highest levels of an R-*-tailed potential
is expected to be cubic in v (i.c., in ¢).12

8 Although the exact vp is infinite for the pure K% attractive
potential, there are a finite number «of levels within any finite
interval about D.1 Hence the quaniities (vp—v) and Curve A
in Fig. 8 are significant in the semiclassical (WK 1) approximation,

# (3. W, King and J. H. Van Vieck, Phys. Rev, 55, 1165 (1939)

5, Margenau, Rev, Mod. Phys. 11, 1 (1939).

8 This conclusion is partly based on Chang [ conchmrm“ that
for the 0,% states of (? and Cuy, these effects do not dominate
the interuction until 8> 60 a.u,

This case i, however, relatively uncommon; Hirschieker
and Meath™b point out that only an excited If atom can have o
permanent dipole moment,



3.2 APPLICATION OF THE METHOD TO THE HALOGENS

3+ .
Iy, )> Presented in

The application of the method to CQZ(B
Section 3.1,is reexamined here, and the analysis is extended to the

analogous states of Br, and L and to the ground electronic state of

2
022, In addition, a simple graphical means of utilizing the method
is presented and verified. TLe work presented below will be published
in the Journal of Molecular Spectroscopy, Volume 37 (Academic Press,
New York, 1971). A preliminary account of these resuits, which was

published in Chemical Physics Letters, Volume45, pages 42-44 (North-

Holland, Amsterdam, 1970), is reprinted in Appendix A.
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Dissociation Energies and Long-Range Po?enﬁdis
é
of Diatomic Molecules From Vibrational
Spacings: The Halogens'

~ Rosurr J. Lz Roy’ anp Ricuarp B. Burwsteny

1 +

Theorehcal Chemistry Institute and Chemisiry Department, Umvarszm of Wisconsin,
Madison, Wisconsin 53706

A recently-developed method for obtaining dissociation limits and long-

- range internuclear potentials from the distribution of the uppermn@zt v1bra-
". tional levels of diatomic molecules is applied to existing data for ti]xe B M,
states of Clg, Brs, and I, and the ground X '=,* state of Cla.. Vahies of the
asymptotic long-range potential constants (C;) are deduced fron: the data;

. they compare well with the best theoretieal estimates. The analysxs vields

* improved D, values for the ground X IZ,* states of 5:#¢Cl,, 7 79$rz 8.81Br,,
" and B117],, respectively, as follows: 19 997.2 (& 0.3), 15 894.5 (+ 0.4), 15 896.6
C.0 (£ 0.5), and 12 440.9(=: 1.2) em™L. Presented also are: (i) a convenient graphical
‘approx1matmn procedure for utilizing the method, and (ii) a graphical means .
of making vibrationsl assignments for higher levels when gaps exist in the
observed vibrational sequence. The latter approach suggests certgin vibra-

tibnal reassignments for ground-state Clo(X 'Z,%) and for Br:(B ).

NN R ST

1. INTRODUCTION ,
An expressmn has recently been derived which relates the Eilstmbutlon of

" vibrational levels near the dissociation limit D of a diatomic molecule to the

' attractive long-range part of its infernuclear potential (/, 2). For the common

situation where the outer branch of the potential may be closely approxlmated
by the attractive inverse-power functionality: .

V(R) = D ~ C,/R", (1)
the distribution of vibrational eigenvalues E (v) near D is closely appi’cﬁiﬁiaffed

by

[E(v)] KD — E(o)]™"™, (2)

' Usmg physical constants from Ref. (3), the constant K, is

- DH4K7 al'(1 - (l/n))
K [(mwwm»] [m/z ¥ <1/n>)] B

for D and E(v) in em™, the reduced mass p in amu , and C, in em™ A" .

" As usual, T'(z) is the gamma function (4). A more useful expressmn is obtained

by integrating Eq. (2)7
E@) =D — [(vp — O)H """ n 52 “)

'  where H, = [(n — 2)/2n]K, , and for n > 2 the integration constant vy, is the
- “effective” vibrational index at the dissociation limit: E(vp) = D. Truncating

 Work supported by National Science Foundation Grant GB-16665 and National Aero-
nauties and Space Administration Grant NGI, 50-002-001.

* National Research Council of Canada Postgraduate Scholar.

? Equation (4) is valid only for cases in which n = 2, However, analogous expressmns

g)rfn(;; 2 and for the case of an attractive exponential long-range potential are given in
e ‘ L
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o to an integer then yields the vibrational index of the highest bound rotation-

less level supported by the potential. Consideration of the third derivative of
Eq. (4) shows that Birge-Sponer plots should show poesitive (upward) eurvature
for levels lying close to D where Eq. (1) is appropriate. The significance of the

" parameters and the types of errors iuherent in Eqs. (1)-(4) are discussed in

Ref, (2). .
In general, values of the four unknowns D, n, €, , and v» may be obtained -

{from a least-squares fit of experimental vibrational vnergmq to g, (4). However,

sinee it is nonlinear in the parameters, Eq. (4) requires good initial trial param- -

eter values if the fit is to converge uniquely. All of the results presented below
were obtained from general fits to Eq. (4), using initial trial values obtained
by the method presented in Refs. (2, and §). Computer programs for these
regression procedures are listed in Ref. (5).

The general smoothing and regression techniques discussed 113 Refs. (2 and
&) yield the best parameter values obtainable from Eqs. (2-4). ?owevcr, results
with almost the same aecuracy may be obtained from a simple graphlcal treat-

“ment of the data, deseribed below, if two extra conditions arg' satisfied. Fll‘%

the value of 7, the asymptotic value of the power in Eq. (1), must be known.*

. "Second, the levels must be sufficiently “dense” to allow use of the approximation

dL‘(v)
Tdv

, Then, thh n held fixed at #," Eq. (2) yields the approximate expngasion

(AG )[2"“"_..2), = [D — E(’))](K“)hni(n—n)]’ N (6)

o AG = "‘[AGv—llz +'AG,,+1/2] = %[E(” + 1), - EG’ - 1)] (5) : h

suggesting a plot of (AG, )" #4913 B (v). For the highest levels this should be

linear with intercept D, while for the relatively deeper levels it should show

negative curvature. Hence, a linear extrapolation from such a plot should always = |
give an upper bound to D. Once D has been determined in this manner, Eq. 4)

: may be rewritten as

[D — Er(v)][(n—-2)12n] — (UD - 'U)Hn ] (7)

- With n = 1, a plot of the left hand side vs v yields vp as the intercept, and H, =

- (and hence C,) from the slope. The usefulness of Egs. (5-7) is demonstrated
- below.

In Sect. II, Eq. (4) is fitted to the experimental vibrational energies of the

- B II¢, states of Cly, Bry, and I, yielding estimates of the asymptotic long-range

potential constants, Cs, and improved values of the ground-state dissociation

energies.” A further application of Eq. (4) is introduced in Sect. III, which sug- -

- gests vibrational reassmgnments for the highest observed levels of Br, (8 °'Ilg,)
and of ground state Clz (X 'Z,"). In the latter case, a fit to Eq. (4) then yields -
- estimates of vp and of the long-range Cs constant.

II. GROUND-STATE DISSOCIATION ENERGIES AND B ’m;, STATE
POTENTIAL TAILS OF THE HALOGENS

A, Chiorine®
. A detailed discussion of the fitting of theexperimental data (9) for Cl, (B °Iif.)

ground X 13,* states, # = 6 (6, 7, 8).
& Unless otherwise stated, throughout this paper all energies are expressed relative to

: the v = 0, J = ( level of the ground electronic state of the designated motopxc molecular
. Bpecies.

8 The present dlscussxon of chlorine considers only the most comnion 1sotop1c species,

s, “Cla

TA summary of theoretical knowledge of the asymptotmally dommatmg power i 1s‘ ~
-given in App. B of Ref. (2). For the B Iy, states of the halogens # = 5, while for their
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to Eq. (4) has been presented (2). However, the reported (f, 2) uncertainties in -

the parameters were incorrectly described as 95 % statistical confidence intervals;

they were actually two standard deviations, corresponding to the 95% confidence
level only in the limit of many degrees of freedom. Parameter values obtained on
fitting the experimental energies (9) to Eq. (4) with n free or fied at i = §
are given in Fig. 1, together with the proper 95 % confidence interyals.”
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? Unless otherwise stated, all uncertainties given in this paper correspond to 96% statis-

. tical confidence intervals. -

e b . e




i o i g e e

W
®
ro

It was concluded in Ref. (2) that the highest observed levels of Cl, (B )
depend mainly on the theoretical asymptotic & = 5 inverse-power ‘term in the.

long-range potential.' The disagreement with the 7 = 6 suggestion of Byrne

et al. (10) is discussed in Sect. IV. The values of D, Cs, and v, reported in Ref.

(2) (which also gave predicted energies of the unobserved highest bound levels

" of this state) are listed for the sake of completeness in Table I, together with the
" improved estimates of their uncertainties.” Similarly included sfe the results

for the other halogen systems, to be discussed below.’

¢ TABLE I
: SumMary OF Resurrs ror THE HaLogENs®
B 3107, states _ D (cm™)b n = C5 (cm™ 5&") 1p
a5,38C], 20879.7; (=:0.3°) 5 1.2 (£0.2°) X 108 34,90 (£0.29)
9,793y, 19579.7y (4£0.27) 5 1.7¢ (60.2) X 10% 60.6; (:£0.3) .
s8Ry, 19581.77 (=£0.35) 5 1.7y (0.2) X 108 61.2s (£0.3)
197,197, 20044.0 (1.2) 5 3.1 (£0.2) X 0% 87.7 (£0.4)
X1z, states (D = D,)

38350 19997.25 (<:0.3°) 6 0.7, (£0.3¢) X 105 61.0 (1.2)¢
BIRr, 16894.6 (=£0.4) 6 — —
8.8y, 158906.6 (2£0.5) 6 — —
127,49, 12440.9 (£1.2) 6 — —

s Sce footnote 7.
b See foolnotes 5 and 9.
* See footnoto 8.
4 These uncertainties are only estimates.

While the parameters given in Table I are the best values obtainable from
Rty the available experimental data (9) using the present method, results of nearly
LS  the same quality are obtained on utilizing these data (9) directly in the simple

graphical manner suggested by Tas. (5-7). For this case the theoretical # = 5,

Dandn =
intercept are very close to the fitted values of H, and v, (from Table I).
- Combining the fitted D value for Cl; (B 'Ilj.) with the *P;; — Py atomic -
" Cl spin-orbit splitting of 882.50 em™ (12, 13) vields a ground-state dissociation
energy of D, = 19 997.25 (4:0.3) em™, This differs significantly from both the
estimate of D, = 20 062 (2:40) em™ obtained by Rao and Venkateswarlu (14)
from a Birge-Sponer extrapolation of their ground-state vibrational data, and
- from the D, = 20 040 (=-20) em™ which Clyne and Coxon (15) obtained on
reinterpreting the data of Ref. (14). However, the discrepancy is removed by
the vibrational reassignment of the highest observed ground-state level, dis-
cussed below in Seet. III.

B. Bromine

- and Fig. 2 shows the plot suggested by Eq. (6); the intercept is indistinguishable
" from the value of D obtained from the fits to Eq. (4) (see Table I). Using this

# = 5, Fig. 3 shows the plot suggested by Eq. (7); its slope and

i ”MW* ‘ , “The present analysis of the B *[y, state of Br, makes use of concurrent fitting ,

¥ The final uncertaintics in the best parameter values for Ol (B "y,) differ from both
~ the previously-reported values (7, 2) and tho true 96% statistienl confidenco intervala
shown i Fig. 1. The valuos given are hest eatimates Bnsod on the 05%, eonfidones intorvala

for the lnst fow points to the right in Fig. 1.

%]

® The uncertainties in these D values differ from ‘those reported previously (7, 2, 11)

i
i

L

won becausetof the incorrect 95% confidence intervals in the earlier work.

~
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to Eq. (4) of data for different isotopes in a given molecular electronic state.
- The only aqsumptmn wquuod 18 that the long-range potential tails of the isotopic

species be identical.'’ If the isotopic potentials are assumed to be identical
; : every\\hele, the number of free parameters in the problem is reduced further,
P ‘ HREE since the ratio of vp values for isotopic species ¢ and j is then determined solely
oo e by the reduced mass ratio:

20 (§)/00 (@) = [w(G)/n ()" ®)

To obtain trial parameter values for a multi- m)tope case (6), Eq. (8) is assumed

and the relative isotope shifts are estimated.” (Alternately, trial parameter

. values may be estimated separately by applying Eqgs. (5-7) or the method of

.- Ref. (2) to the data for the individual isotopic molecules. ) However in the final
fits to BEq. (4), D, n, C., vp for each isotope, and the relatxvg‘*‘ s energy shifts

- (ground-state zcro-point cnergy shifts’) for the different specieg were the free

Ve e tymm it o
s < D - & o koo e e

R it vn .

‘; . o _parartieters.
: ' Horsley and Barrow (18) have measured vibrational energies ?‘f four adjacent
a1 vibrational levels, v = 50-53, near the dissociation limits of the B Iy, states of

181, and ® ¥ Br,. (It is suggested in Sect. I1I that their vibrational assignment
for these levels is one unit too small; the new numbering is used here.) Un-

; e S free did not yield a, reliable value of #. However, since all the le pls considered
4 .. 0T+ Hie within 20 em™ of the dissociation limit, it is probable thag they depend
- SRR primarily on the theoretical’ asymptotic potential behavior (V(R) ~ R™*).
The plausibility of this assumptlon is strengthened by consxderatlon of Fig. 2
whlch shows that for Cly (B °IIq, ), the levels within ca. 40 cm™ of D accord w1th
= 5, while the theoretical Cs for Cl; is considerably smaller than that for Br."*
Fixing n = 7 = 5, the eight data were fitted to Eq. (4), yielding the param-.
eters given in Table I, and an isotopic zero-point energy shift of 2.05 (£0.12)
- o ~em .7 The latter is in good agreement with the more precise value of 2.03 cm™,
[ Lo the difference between the ground-state isotopic zero-point energies calculated
ey - from the vibrational constants of Ref. (18).

The ratio of the Br; isotopic v5's in Table I agrees well within the uncertainty
of the fit with that predicted by Eq. (8), confirming its validity for this case.
i ot s L Hence Eq. (8) may be applied for the mixed isotopic molecule " Br,, yielding
; o L T = 60.89. Furthermore, the (79,79)-(81,81) isotope shift suggests a value of
‘ A ’D = 19580.7, em™" for the mixed isotope (¥9,81). Using these interpolated
: e kT parameters and the constants given in Table I, the energies of the highest vibra-
A tional levels of the B 17, potential may be predicted from Eq. (4) for all three

e . 1 This is much less stringent than requiring precise potential invarinnce everywhere, '
 including B values near the minima. Small differences between potential curves for differ-
o _ent isotopic species in a given state arise from the coupling of nuclear and electronic motion.
2 e In their a priori caleulations for the ground state of H» , Kolos and Wolniewicz (16) showed
b that the effect of such coupling disappeared at long range. More generally, the effect of
Db this coupling on an eigenvalue depends on . the expectation value of the nuclear kinetic
energy, and this goes to zero for levels approaching the disscciation limit [e.g., for ground
state H, , see Table 111 of Ref. (17)].

" These shifts were estimated in two ways: (a) by comparmg vibrational zero-point
enorgies, and (b) by separately smoothing the levél energies for the different isotopic
molecules ag functions of a common shseissa x (related to the vibrational quantum number

S bytx = v(i) w(1)/uG)]”? and comparing the calculated ordinates at any chosen x value.
2 Values of long-range C; constants may be expressed as the product of a factor peeuliar
" to the electronic state in questmn, and the expectagion values of the square of the radii
. . of the valence electrons () on the interacting atoms (6). Knipp (6) and Chang (?) have
! presented tables of these numerical factors for & wide range of situations, snd Fischer (19)
' has recently presented accurate Hartree-Fock values of (% for the shells of most atoms.

E - ) " fortunately, a fit of these eight observations to Eq. (4) with all sgx parameters .
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isotopic species. In Table 11 these are compared to the experimental (m_nrgics of
Ref. (18) for the pure (79,79) and (81,81) isotopes, and of Brown (20) for
79,81 1 |
(l?\s 13 the discussion of Cls, it is interesting to compare the best fitted parameter
values with the estimates of them which would have been obtained from Egs.
(5-7 ), with # = 7 = 5.} In this case the two isotopes must_;“llo considered_ sepa-
rately; for each, the four observed energies yield only two AG/, values, uniquely
determining the intercepts D. These resultant D values for (79,7%) and (81,81)
are, respectively, only 0.05 and 0.15 Qm" larger than the besg fitted yz%lues
(Table I). Using these (approximate) D’s and fixing n = 5, Eqi{'?) tlx.egx'yxelds
Fig. 4. As before (for Cl, see Fig. 3), the slopes and intercepty’ lie within the
statistical uncertainties in the fitted Table I parameter values.‘:e}f
Combining the fitted D values for the pure isotopes with the 3685.2 (£0.3)
em™ spin-orbit splitting (21) yields ground-state dissociation encrgies of __D{'
(79,79) = 15 894.5 (4-0.4) em™’, and D, (81,81) = 15 896.6 {(0.5) em™ .
The consistent estimated value for the mixed isotope is D, (79,81@ = 15 895.5 .

(£0.5) em™.

TABLE II
Carcurarep ENeraiss (em™1) or Ter Hicuust Bounp Luvers or Isoforic Bra(f3 31ls.)
Numbers in parentheses are experimental; for (79,79) and (81,81) these nre from Ref.
(18), while for.(79,81) they are taken from Ref. (20)* :

v (719,79) (79,81) (81,81)
41 - 19 453.44 19 448.89 (19 470.3) 19 444.00
42 473.76 469.72  (486.2) - 465.37
43 491,66 488.13 | (490.5) 484 31
44 507.34 504,28  (512.5) 500,97
45 520.94 518.36  (524.3) 515.53
46 532.65 530.51 ° (531.5) 528.15
47 542.62 540.90  (542.2) 538.98
48 551,01 519.68  (551.4) 548.18
L 49 . BET.OT 557.01 555.90
SR B 563.65 (19 563.65) 563.04 502.28 (19 562.28)
Y B 568.20  (568.20) 567.90 567.46  (567.45)
52 571,76  (371.77) 571.74 571.60  (b71.61)
53 574.47 . (574.47) 574.69 574.82  (574.81)
e 54 576.46 576.89 B77.24
S 55 577.84 578.46 579.00
. 56 578.75 579.51 -580.22
[ 57 579.2, 580.14 581.00
e 58 579,41 580.51 581.4;
g :i( E 59 579.59 580.59 581.33
: 15 s 60 579.71 580.74 581.75

61 581,47

» ST ) at?ge foibnite 13.

H
T e A 0T B o n s

13 Brown (%0) stated that: “In general the measurements are not sccurate to better
than 2 em™, and in cases where the isotope effect has not been identified, the error is con-
. siderably greater.”’” Furthermore, consideration of Table II suggests that some of his band
. heads might more properly be reassigned to the pure isotopes and/or to different vibrational
levels. If this is done, for 6 of the 8 experimental (79,81) energies given in Table II the
;- agreement is better than 2 em™, while for the other two (v = 44 and 45) the disagreement
is at wors{ 3.5 em™. In any case, the caleulated (T%ble II) energies for the deeper levels

. ‘(,‘i:_@:’. 1 @):are likely to be incressingly in error, '
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Fia. 4. Dats for the (79,79) and (81,81) isotopes of Brs (B y,) (18) p%@tted according
to Bq. (7) withn = # = 5 (see footnote 4); as in Fig. 3, The slopes of the lines differ by
the amount predicted by the reduced mass factor in Eq. (3). "‘

vy B

i . 0. Iodind® R
o The only quantitative data for this state extending above » = 58 appear to .
be Brown’s (22) band-head measurements for levels v = 48 tof??.“ Since 8-
Birge-Sponer plot of his vibrational spacings shows positive cu@rature every- - ..
* where, these data are suitable for treatment byithe present methad.
" As for Cly (B*MIf,) (2), the vibrational energies were repeate(ﬁy fitted to Eq.
- (4) while the deeper levels were successively omitted from congideration. This
was done in turn with all four parameters being varied freely, and with n fixed
at 7 = 5. The resulting parameter values are shown in Fig. 5, plotted against
“the energy of the lowest level included in a given fit, If (v.).” Unfortunately, the
- scatter in the data is such that the four-parameter fits become unstable when
- fewer than 10 levels are considered at once, precluding a direct determination
of . Even when n is held fixed at ## = 5, the three-parameter fits become erratic
when fewer than 9 levels are considered at once.

While reliable “local values” of n cannot be determined directly, the flattening

- of the three broken line curves in Iig. 5 for v;, 2 55 strongly suggests that the .
highest ca. 18 observed levels lie in the asymptotic (# = 5) region. This is quali-

* tatively confirmed by the fact that the fitted C; values are within 30% of the
theoretical value® of 4.5, X 10° cm™ A®. The present best estimates of D, Cj,
.. and vp , presented in Table I, were obtained by weighting the results for v, = 55
. to 64 by the squared inverse of their uncertainties.” The vp value suggests that
this state has 15 vibrational levels above the highest one observed by Brown (22);
predicted values of their energies, generated fiom Eq. (4) and the parameters

in Table 1, are given in Table I11.

As in the previous cases, the best fitted parameter values can be compared to
estimates of them obtainable from Egs. (5-7). Figure 6, based on Egs. (5-6), -
yields an estimate of D indistinguishable from the value in Table I. Furthermore,
the linearity of this plot for v 2 55 confirms the dominant # = 5 influence in
this region. The ensuing plot based on Eq. 7 (Fig. 7) yields estimates of vp
and H,, lying well within the statistical uncertainties in the Table I values. ,

Combining the fitted value of D with the 7603.15 em™ atomic 2Pl,z — 2P3/z ’
splitting (12, 25) yields a ground-state dissociation energy of D, = 12 440.9
(£1.2) em™.? The source of the disagreement between this result and Verma’s
(26) D, = 12 452.5 (&1.5) cm™ is discussed elsewhere (11).

1

" " The present discussion of iodine considers‘only the most common isotopic species
o n7,197] ]
i 4 15 The original vibrational numbering of these levels has since been revised (23, 24);
: _ thus the numbering used by Brown (22) has been decreased by one unit.

i R e e e e e
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TABLE III '

- ‘} ~} 1 ]L N f@
SRR {-HH ANCCIIE
; i 1 i ! 1 ’ { L i 1 :E
_}“‘T«-}-..}__ . o _ :_E
Pt
\ !
-~ n=5 [
2ar \ i ] i 1 1 1 \ A ',-
e ———
gsl n=5 ‘vl x|
81: . ' | ‘ ey . l‘ . |l
19 700. 19 800. 19900. 20000,

~ Cawcurarep ENErGiEs (em™) orF T Hieuest Bounp Leveis or ¥.9[,(B My
Brown’s (22) experimental energies for » S 72 are given in parentheses. .

] E@) v E(v)
66 19 987.2 (19 986.9) 77 20 038.6

C 67 19 995.5 (19 995.5) 78 0490.1
68 20 002.8 (20 002.7) 79 041.3
69 009.4  (009.6) 80 - 042.2

270 015.2  (015.5) 81 042,
71 020.2  (020.2) 82 043.,

. 72 024.7 (024.4) 83 043.,

B & 028.5 84 043. 5

R 031.7 85 043, 54
75 034.4 86 043. 08
76 036.7 81 044,40
¥ [

- s L
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' Fra. 5 Results of ﬁttmg expenmental vibrational energles of T ”"Ia (B ‘IIo.,) (.92) to B
Eq (4); as in Fig. 1.
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T Fre. 6. Data for W11, (B ﬁ:u) (22) plotted according to”Er“g. (5-6) with‘n o= fi = §
. (see footnote 4); as in Fig. 2. N ;

l‘|un-|‘||'1,|V|v|||;vrr‘|1“|7|-|||,||;‘v,_.;q|-|t|-
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AT " Fra. 7. Data for #1271, (B TI;,) (22) plotted according to Eq. (7) withn = # = 5 (see
e footnote 4); as in Fig. 3. ) :
Sl T III. PROPOSED VIBRATIONAL REASSIGNMENTS
" A. General
"~ Frequently the energies and indexing of the deeper vibrational levels of a
given electronic state are accurately known, while near its dissociation limit D
SRS the data are often relatively sparse, with gaps of several vibrational quantum
"1 oL+ o numbers between observed lovels. In the absence of additional information, this
S © mny lead to errors in vibrational assignments,
o ~ One constraint which may be applied to the data is to require that the Birge-

‘Sponer plot for the species in question should have positive curvature for levels

e v A s g A

.
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"near D (1, 2). The present approach implicitly includes this constraint while
‘making more explicit use of Eq. (4). The necessary assumptions are a value for

#i, and a good estimate of D which is independent of the vibrational numbering

.under dispute. Then [according to Eq. (7)), for n fixed at #, a plot of [D —

E )] vs v should be linear for levels very near D, while showing progres-

sively stronger negative curvature for deeper levels (see discussion in Seet. I). -

Since the long-range interatomic interaction may be expressed;%x(w, 28) as a

‘sum of inverse (integer)-power terms in B (of lowest order #), the effective.
“t]ocal” n at the outer turning points increases with the binding egergy. However, -

congideration of Eq. (4) shows that in the limit of very largq;ifh, D — E@))

varies directly as (vp — )% Thus, a plot of [D — F ®)]'* vs v should have
strong positive curvature near the dissociation limit (for # > 4 this curvature
becomes infinite at ), while becoming increasingly lincar for the deeper levels,

The present approach consists of requiring the vibrational maignment to be
such that the two types of plot discussed above show the approprigte curved and

linear regions. As a check, in Fig. 8 this approach was applied §0 the data of

Douglas et al. (9) for Ch (B My.), for which #i = 5. Clearly, even had there
been a gap of 10 unobserved levels somewhere in the range, Fig. 8 would have

" e unambiguously fixed the vibrational assignments..

‘l‘IAVi‘lilllllTlll[lll’1]lll|]|ll'
—18.
.
—~6.\Q
17z
W
4.8
2.
~ ]
~
\\
bt
PSR YRR SORT TN OO YU YOUE NN Y AT S WO TUUNY SOURN U SRR SHT SUUE TR I TN SN SUUNE SN S TR A WY ol
10 15 20 25 30

F1a. 8. [D —~ E(v)]ln-2in] y5 y for observed levels of 35,35C1, (B *1ly,) (9) with D from

Table I, for both n = « (@, left ordinate scale); and n = # = 5 (4, right ordinates). All

+..... boergies are in cm™. The broken lines are tangents to the two curves in their linear regions. °

B. Vibrational Reassignment and Potential Taz’l- of Ground-State Cl; (X 'z,™)

The only experimental data for highly excited vibrational levels of ground state

_ Cl; are the UV resonance emission doublets reported by Rao and Venkateswarlu
* (14). The rotational assignment for these doublets has recently been revised

(15) yielding slightly different energies, and these are used here. However, the |
- validity of the present discussion does not hinge on this change. '

In Ref. (14), the extrapolation of a Birge-Sponer plot gave a value for the |

‘ . ground-state dissociation energy 65 (==10) em™ larger than that of Sect. IIA®

" 1 From the same data Clyne and Coxon (15) obtained & D, value 43 cm-1 larger than

__the present estimate; however, this change does not affect the arguments presented here.
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" Furthermore, this plot showed growing negative eurvature near the dissociation

limit, which would be worsencd if the extrapolation were constrained to yield
-the present D,. This is the opposite of the expected behavior in this region,
especially since the vibrational spacings for the analogous (but shallower)

ground elcetronic state of I, (29) show positive curvature for levels lying within

'1000 em™ of the dissociation limit. Although one expects the long-range inverse-

"~ power attractive potential tail to be somewhat weaker for Cl, than for I, its

L rated by gaps assigned, respectively, as two, three, two, and ‘one unobserved -
~ levels. The anomalous increasingly negative Birge-Sponer curvature is explained
if these gaps are too small. Using the theoretical # = 6 and the ground-state

_influence on the highest vibrational levels should not disappear altdgether.

Ref. (14) reported observations of all adjacent or semiadjaceqjt ground-state

" levels from v = 9 to 42. Above this point four other levels were%)bserved, sepa-

- dissociation energy obtained in Sect. IIA, the observed level enerfgies freevalu-

ated using the rotational reassignment of Ref. (15)] are presented in Fig. 9 in

the form suggested by the preceding section. Above v = 42, each pair of adjacent

points is joined by a straight line which is extrapolated to the tie-lig{e correspond- .

ing to the next higher observed level. The possible vibrational agsignments cor-
respond to integer values of » on these tie-lines, and the three pairs of curves in
TFig. 9, (4,4"), (B,B') and (C,C’) correspond to the only plausible sets of
assignments.

t B e S e ESN AN M S Bt S S Sne St AL BEm B B S SN AN R

\ .
[T W N I SO TOT TS WU TN UK U TR UUUE SN SO SO TR | W T T (O

45
v

Fre. 9. [D — E(v)]l("‘””"i vs v for observed levels of 35.35Cl, (X 12,%) (14, 15) with D . ‘
* from Table I, for both n = « (®, left ordinate scale); and n = % = 6 (A, right ordinate

scale). All energies are in em~!. The possible vibrational assignments (points joined by

solid lines) correspond to integer values of v on the tie-lines for the different levels near -

their intersections with the linear extrapolation from the two preceding levels (broken

. lines).

In Fig.HQ, curves (C,C") correspond to the original assignment (14); as stated o

“above and confirmed by the curvature shown, this is implausible. Curve 4 shows

positive curvature for the higher levels which is too pronounced to be due %o
experimental error. However, the slight positive curvature in B at the highest
observed level is within the uncertainty in the.experimental energies.'” Thus, it
appoa;s that the (B,B') reassignment of the original (14) v = Hd ns v = 55 is
correct, ' I

7 The scatter in the doublet splittings (14) which:’ give the B, values for the observed

A f‘up_per_ lgvel,s is large enough_to yield possible errors of a few em™! in the level enargies.
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The main restriction on the use of this approaéh is the requirement for a good
initial value of D. Applying the method to the same energies using trial D values
in turn 50 cm™ smaller and larger than the present value would have yielded -
(C,C") and (4,4"), respectively, as the most probable assignments. On the
" other hand, using D, = 20 012 em™, the best estimate available previous to
Ref. (14), the present reassignment is obtained.
It is important to note that this reassignment negates the speculation con-
“cerning a possible barrier maximum (9, 156). No such maximggm is expected )
theoretically, since for the ground states of the halogens, at least the first two
- nonzero inverse-power potential terms are attractive [see the argument presented
. for Inin Ref. (11)], as well as the exchange forces which give rise to the chemical
binding. e
Using the known 7 = 6 and D, for the ground state, Iiq. (4) wg@ fitted to the -

~three highest experimental energies (v = 49, 52, and 55) yieldingjthe values of
Cs and vp given in Table I. The Cs obtained is in fortuitously good agreement with SR
- the theoretical Cs = 0.82 X 10° em™ A%, estimated by Caldow and Coulson (30). -~ =7 i
~ However, fitting the highest two levels using the (4,4") and (C,C’) vibrational =~ = .-+ -
" assignments would yield Cs values respectively 7 times larger and 14 as large
. a8 the theoretical estimate. This lends credence to both the present vibrational
-reassignment and the significance of the fit itself. Table IV presents the energies
predicted by .the constants in Table I for the highest bouﬁd levels of
Cl (X 'z, 1) '

TABLE IV
CarcvnaTep ENBRAIES (em™?) oF THE HieHist Bounp LeveLs oF GROUND-STATE
‘ ‘ 35,35011()(12; )
The experimental level energies are given in parentheses.
v E(v) v Co ' E(v)
48 19 119, 55 19 911, (19 905.%)
. 49 306. (19 305.2) 56 : 947,
50 465. 57 972.
51 597. 58 986.
52 706. (19 Tii.») 59 094,
53 792. 60 996. ¢b
- 54 860. 61 997, 2>

a Calculated from the data in Table I of Ref. (14) using the rotational reassignment of
. Ref. (15) and the ground-state rotational constants of Ref. (9).
- ® Because of the uncertainty in vp (see Table I), these levels may not exist.

C. Vibrational Reassignment for Br, (B “Iit.)

The four vibrational levels observed near the dissociation limit of the B *my,
state of each of “™Br, and *"®Br. were originally assigned as v = 49-52 18).
The only other measurements of the upper vibrational levels of this state are

-~ Brown’s (20) observation of levels up to v = 48 of " Br,. In order to compare .
these results, the (79,79) and (81,81) energies (78) were averaged to yield ap-

: .. 7 proximate (79,81) energies for the levels considered. For this species (7 = 5
e . and D was obtained in Sect. IIB), Fig. 10 is the plot suggested by Seet. IIIA.

: : The solid points are from Ref. (20) and the open points are tho intorpolated

o8 . onergios montioned above. It is apparent that the original (18) vibrationnl -

R numbering of the latter four levels must be increased by one. This reassignment

o wag used in Sect. IIB, ' ' : e
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ordinate seale), and n = # = § (triangles, right ordinates secale). All energies are in em™1;

... *old”” and *new’’ refer to the vibrational assignments of the four highest levels.

IV. DISCUSSION

E A. Comparison of B I3, State D Values with Previous Resulls

Most of the results in Table I differ somewhat from previofis dissociation

limits and conclusions about the nature of the long-range potbntials, despite
" being based on the same data. For the D values, the appropriate quantity for

comparison is [D — E (vx)], the binding energy of the highest observed level.

Table V compares the present and best previous values of this quantity for the

__,_._._........;__._...»..,H-_ e Tl

B*mug., states of the halogens.

In the case of I, the discrepancy originates in the graphical extrapolation of
Ref. (22) beyond the highest observed levels. This illustrates the errors which
may arise ﬁom use of the Birge-Sponer (31) and Birge (32) extrapo]atlon
procedures

The previous best estimates of the dissociation limits of the (79,79) and (81 81)

“isotopes of Br. (B'1¢,) (18) were based on limiting curves of dissociation [e.g.,
" see Chap. VI of Ref. (33)]. The discrepancy with the present results implies

that the absorption series were incomplete; i.e., they did not extend to the pre-

" open points) levels of 7*%Br, (B T1;,) with D from Sect. IIB, for bothn = o (clrcles, left -

dissociation limit. It has been shown (34) that for vibrational levels lying near -

TABLE V

Bmmna ENBRGIES (cm"‘) or Hieaest OBSERVED LEVEL (l)y) oF THE B g, STATES oF
THE HALOGENS

Species ‘ g 'v " Present Previous

LU PRI 31 2.8 (£0.3)2 3.1 (£2.)
7,798y, : 53 5.2; (£0.2) 2.7 (£0.5)°
81,318y, 53 6.9¢ (:0.35) 4.1 (40.5)°
127,977, 72 1.6 (&1.2) 12,64

* See footnote 8.
b From Ref. (9).
* ¥rom Ref. (18).
¢ From Ref. (22).

i i_!ﬁ For an excellent review of these methods, see Chap. V of the book by Gaydon (33).
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the dissociation limit, the encrgies at which the rotational series for the different K
vibrational levels break off due to predissociation should vary as [/, (Jn +
D™D where n = i, and J, is the rotational quantum number of the last
unpredissociated level. For Brz (B 31132), (for which #i == 5 ) the theoretical Cy
coefficient'® vields a predicted slope of 2.0 X 107° [em™] for plots of E(J,) vs
NI + )P, Since the data (I8) do not conform 'to this behavior, it is -
inferred that the experimenters did not observe the very highest nonpredissociat-
. ing levels. This is consistent with their lack of observation of any broadened lines.
, One further effect to be considered is the effect on the fitted D value of an
" error in the chosen value of #. Fitting the data to Eq. (4) in the manner de-
scribed in Sect. II, but with n set equal to 6 instead of 5, one obtains D values
for Cly, Bry, and I, respectively, which are only 0.36, 0.50, and 2.7 ¢cm™ smaller -
than the best values (Table I).

'B. The B "N, State Potential Tails; Comparison with Previous Resulls and with

’ Theory :
- Byrne et al. (10) concluded that the outer RKR turning points (35) for the . . = =
B¢, states of both Cly and Br, followed an R™® dependence, rather than the ~ v .7

theoretical' asymptotic B~ form. However, the validity of this conclusion is -
-contingent on the accuracy of the RKR potential and of the value of D assumed. . *
-~ Tor Cl; the reported turning points (35) are plotted against binding energy in
 Fig. 11, using both the present D and the experimenters’ (9) D [pyesumably the = - "
~ value used in Ref. (10)]." The small differcnce between these D’s Bas a negligible '~ 1.~
effect on this plot, and it appears that the previous # = 6 deduction is wrong
since it requires ignoring the last few levels. [This also implies that the reported
(10) “Cy” is spurious.] The difference between the intereepts of curves A and B
" in Fig, 11 indicates that either the present best C; is ea. 40% small, or that the
RKR results are slightly in error. The latter is plausible since no experimental
‘data were available for the lowest six levels of this state, spanning the lower40% -
of the potential well. - ' '

b e S

xi 20879.75
| 20880.00

P s o7 o8 Wos 10 .
L L egRe] et et
: : Fie. 11. Log-log plot of binding energies (em™) vs caleulated (35) RKR turning points .
(&) for 3.35C1, (X 13,*) using both the present (X) and the previous (9) (®) estimates of , = .
D (see footnote 19). The straight lines have slope of —n; the intercept of 4 corresponds -

to the present (Table I) C; , while line B is the best nl= b fit to the points for the upper-
‘most levels. : ‘ C

19 The v = 32 turning point reported by Todd et al. (35) is ignored here as being spurious, gy

‘sénce ?hen? is no reported observation of this level. This point would lie well above all the -
lmes' in Fig. 11, since their extrapolated [E(32) — E(31)] is some 30% smaller than that
i 'preélcﬂ;ed (2) on substituting the constants of Table I into Eq. (4). ‘
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" "based on the measurement of two vibrational bands whose upper states they -
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The RKR potential for Bry (B° "y, ) from which Byrne et al. (10) concluded |

# = 6 appears to have been calculated (35) for the mixed isotope (79,81) from
the averaged Ref. (18) data for (79,79) and (81,81). However, ;these results
only span levels 9 £ v £ 19 and those rea,sqlgncd as50 S v 2 83, andv = 9
lies ca. 37 % of the well dopth above the minimum. In addition to using the in-

correct original (18) vibrational assignment for the four high lovels, the inter-

56

polation over the large gaps in the spectrum is quito unreliable. For example,

the interpolated v = 30 and 45 (79,81) encrgies are, respectively, 6 and 9 em™

higher than the values reported by Brown (20), while the extrapolated (35)

[E(9) — E(0)]is 8 em™ larger than the value obtained from the data of Darby-
shire (36). Since the unreliability of the RKR potential (35) appears to be the

source of the previous (10) anomalous # = 6 conclusion, log-log plots similar
to Fig. 11 are not presented here. However, it is noted that infreming D by

2.4 ecm™ from the previous value (/8) to the present one altergd the binding . "
~ energies for the highest levels sufﬁcicntly for the last two points,on such a log-

log plot to display the proper slope of —

of I, (B*s.), and on smalyzmg them, concluded that the potentlal was dis-
- playing its theoretical 4 = 5 behavior’ in this region. On the other hand, the
results presented in Figs. 5 and 6 suggest that the potential deviateg significantly
from this asymptotic behavior for v < 55; moreover their (37?apparent Cs
coefficient is more than 100% larger than the theoretical valuef® Thus, their

= 5 conclusion appears fortuitous. Their turning points for 43 £ v < 51 were

assigned as v = 43 and 49. However, their ensuing v = 49 energy is 11.4 em™
lower than the value observed by Brown (22), leading to a reassignment of their
49-1 band as 57-2 [see footnote 4, Ref, (11)]. This error in energy erroncously

Steinfeld et al. (37) calculated RKR turmng points for levels 43 £ v < 50

compressed the levels 43 < » < 49, and this is the probable source of their ap-

parent R~ behavior. /

In Table VI, the “experimental” (s values obtained by the present method
are compared to the theoretical values.” Also given are the approximate binding
energies beyond which deviations from simple R™® behavior become apparent, as

indicated by Table II and Figs. 2 and 6. These quantities will depend mainly on .-

“the relative strengths of the contributing R™°, B, and R™® potential terms. It

appears that for Br, this range is anomalously small in relation to the relative

strengths of the Cs coefficients. However, this may be spurious, due to errors in

either the energies or the assignments of the (79,81) levels of Ref. (20)."”
TABLE VI

Com"mxﬁon or PrESENT EXPERIMENTALLY DERIVED O VALUES (em™? A‘) WITE THEO-
RETICAL EsTiMaTES (SEE FoorNoTE 12) ror THE B My, STATES oF THE HALOGENS

By, (n = 5) is the approximate binding energy beyom} Whrch deviations from R-5 behavior

- become é,pparent in Fxgs 2 and 6 and Table II.

Species Ch Br: I
Cy, experi- 1.5 (£0.2) X 108 1.7, (0.2) X 10® 3.1 (0.2) X 10°
mental - : ‘
theoretical“ 1.4, X 108 2.3s X% 10 4.54 X 108
B, (6 = §) 60 s 200
Iom“l '

» Bantfontnote 12,
b As discussad in footnols 13, the isotopic assignments of Brown's {(20) lovals mny be in

- error, in which case this 50 ema™! is a lower bound to By (/i = 5).
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. . While the present “experimental” (s values are scen to be in reasonable

' * -agreement with theory, they are consistently small. Since there may be some °
" residual bias inherent in the present method (2) it is difficult to make an appraisal

~ of the theoretical values, although a potential weakness in them was mentioned -
" in footnote 46 of Ref. (2). However, the qualitative agreement shown in Table -

" do depend mainly upon the asymptotically dominant ™ potential tail.

V. CONCLUDING REMARKS

‘ L The main restriction on the use of the present method (fits to Eq. (4))” is

S - that the levels considered must lie close enough to the dissociation limit that

e . their Birge-Sponer plot shows positive curvature. It has also been found very

“advantageous to know the theoretical # for the state under comldﬁratlon." If in
addition the level density is great cnough to satisfy the linear apQ roximation of
Eq. (5), then application of Fqs. (6, 7) may yield good approxizg pations to the -
best parameter values (see Sect. I1). Where appropriate, therefo;e, plots of the
form of Eq. (6) should replace conventional Birge-Sponer extrapolations as a
means of determining the dissociation limit D.

It is beheved that the present methodology is now sufﬁclently well docu-
i mented” to become another everyday tool in the spectroscopisty’ data analysis

kit. L ’ -

Receivep: June 26, 1970
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3.3 FURTHER DISCUSSION OF THE METHOD

Approximate Graphical Procedure for Determining the Power n

In the two preceding sections,1’2

values of the potential parameters
D, n and Cn’ and of the limiting vibrational index Vps were obtained
from (non-linear) least-squares fits of sets of experimental vibrational

energies to the expression:
2 -2
E(v) = D - [(vy-ng_ 1122/ @D (1)

where Hn is a known function of n and Cn'3 On the other hand, in part T
of Ref.. (2), simple graphical procedures (utilizing an assumed known
value of n) were presented for determining D, Cn and vy from such data.
The latter are slightly less accurate than fits to Eq.(l),insofar as
they assume that the first derivative of the vibrational energy with
respect to v, E'(v), may.be accuratel¥ obtained from the differenggié

formula: S

3} ~ AC - 1
E'(v) = AGV = L[AG

vt

+ 4G ;1 = B[E(wH) - E(v-1)] . (2)

However; this does not appear to introduce serious errors, since in the
cases congidered, the graphically-obtained parémeter valués are vin;
tually indistinguishable from the results of general least-squares fits
with the same assumed n=2 It will now be shown that a similar approximate
graphical procedure may sometimes be used to determine n.

The second derivative E''(v) may be reasona@%y»appébximateé by an

expression analogous to Eq.(2) :

B (v) = 4% = [Ae , - 86,1 = [E(wHl) - 25(v) + E(v-1)] . (3)



Replacing the derivatives in Eq. (15) of Ref. (1), by Eqs. (2-3), one

obtains4

HZE.V/{SZGV = - (—2_—;%) (vy=v) (4)
Fig. 1 shows the plot suggested by Eq. (4) for the highest observed
vibrational levels5 of CQZ(B 3ng); the three lines have slopes corres-
ponding to n = 4, 5 and 6. It is evident that the five highest points
(based on the seven highest observed levels) correspond most closely
to n = 5, The negative curvature of the remaining points reflects the
growing influence of other contributions to the potential.

The results in Fig. 1 are in accord with the previous conclusiOn6
that the distribution of the highest observed vibrational levels of
B-state Clé depends mainly on the theoretically asymptotically-dominant
R_s potential term. This demonstrates the validity of Egqs. (2-3) for
this system.7 Thus, it appears that whenever the approximations of
Eqs. (2-3) are fairly accurate, Eq. (4) can fulfil the same useful
role as Eqs. (6-7) of Ref. (2). Unfortunately, it may not be applied

to the analogous states of Br2 and 12, because of the paucity of the

data for the former, and the scatter in the data for the latter.
Validity of Approximating the Potential by a Single Inverse-Power Term

Over a sufficiently narrow interval, any monotonic attractive
potential with negative curvature may be accurately represented by the

three—-parameter expression:

V(R) =D - Cn/Rn (5)
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- Figure 1: Experimental data for CQZ(B 3H3u) > plotted according to Eq. (4).



In view of the inverse~power form of the perturbation-theory expansion

8

for long-range interatomic potentials,

V(R) = D ~ Echn/RF ; (6)
n=n
Eq.(5) is particularly appropriate at the outer turning points of

vibrational levels lying near D. However, since Eq.(5) (on which

Eq.(l) is based) is only a local approximation to Eq.(6), the parameters
n, Cn and vp in Eq.(1) have no theoretical significance unless they
describe levels sufficiently near D to depend on the limiting power 1 .

Consequently, applications of Eq.(l)l’z’9

have placed most emphasis on
fitting it to the very highest observed levels, while fixing n equal to
the theoretically known n ,8 While this was shown to be a very good
assumption in Ref.(9), it is somewhat less accurate for the systems

1,2

discussed above.
34 . . 1,2
For the B( Hou)—state halogens discussed in the present work, ™’

Eq.(6) becomes (see Section 2.3):

5 6 8
VR) = D - C/R” - C/R° - Cg/R® ... (7)

so that the levels nearest D correspond (via Eq.(l)) to n=n=5 . The
only direct evidence of this was obtained for 022 (see Fig.5 in Réfetl),
Fig.l in Ref.(2), and Fig.l here), the data for Br2 and I2 being re-
spectively too few and too uncertain to allow definitive conclusionsagfzf
However, the agreement of the derived "experimental" C5 values with
theory (see Table VI in Ref.(2)) apparently attests to the validity of

this assumption for the highest observed vibrational levels of all

three species. On the other hand, the relative
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magnitude of the second inverse-power term in Eq.(7) decreases slowly
with increasing R, so that it may still contribute significantly in
the region of interest. In view of the results of Section 2.3, the
effect of such terms should be considered.

The analyses in Section 2.3 of the four outermost RKR turning
points for the B-states of CRZ and Br2 suggested that in this region,
the R~5 term in Eq.(7) is responsible for only ca. 65~75% of the total
potential. Thus, although it still preponderates, use of a single~-
term R'-5 approximation for the potential is gomewhdt 4in error.
Qualitative consideration of the arigin of Eq. (1) showsl that this

causes the apparent C. constants obtained frem fits to Eq.(l) to be

5
somewhat small, as was found,,l’2 However, these errors will probably
not significantly affect the reported2 D and vy valuesolo

It appears that the non-negligible influence of potential con-
tributions other thap the asymptotically~dominant R"E term most
seriously affects the coefficilents CE yielded by the fits to Eq.(l).
However, this deficiency is at least partially removed by an expansion

of Eq.(l) which takes account of other contributions to the potential,

work which will be reported elsewhere,11
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1. Section 3.1; also, published in J. Chem. Phys. 52, 3869 (1970),
by R. J. Le Roy and R. B. Bernstein.

2. Section 3.2; also, to be published in J. Mol. Spectry. 37 (1971),
by R. J, Le Roy and R. B. Bernstein.

3. See Eqs.(3-4) in Ref.(2).

4, Eq.(4), with the differences replaced by the corresponding deriva-
tives, was previously applied to the exact computed eigenvalues
of a model Lemmard-Jones (12,6) potential,1 The slope of the
ensuing plot had the expected n=6 value of 1/2, and was distinctly
different from the n=5 and 7 slopes of 3/7 and 5/9, respectively.
However, in this model system the approximations of Eqs.(2-3) are
quite poor for the highest levels, so that Eq.(4) may not be used.

5. A. E. Douglas, Chr. Kn. M¢pller, and B. P. Stoicheff, Can. J. Phys.
41, 1174 (1963).

6. This prior conclusion was obtained by the more complicated procedure
of performing least-squares fits to Eq,(l)@l

7. For B-state 022 s replacing the differences in Eq.(4) by the
corresponding derivatives mainly smoothes the points in Fig.l, and
does not significantly affect the present conclusions. Note,
however, footnote 4,

8. Here, n is the power of the lowest-order term contributing to Eq.(6).
A summary of the rules determining n is given in Appendix B of
Ref.(1).

9. W. C. Stwalley, Chem. Phys. Lett. 6, 241 (1970).



10. This is concluded on the basis of the observation that fixing n=6

in fits of Eq.(l) to the highest observed B-state levels of Ciz 5

Br2 and 12 s had only a small effect on the D values obtained.2

11. R. J. Le Roy (to be published).



4. OTHER METHODS OF OBTAINING INTERATOMIC POTENTIALS

The present discussion is mainly concerned with the empirical
determination of interatomic potentials. Hence, no examination of
ab initio calculations is attempted here, and the reader is referred

. . . . -7 .
to reviews and texts on this subject. The following is a very
brief summary of a number of techniques, presented mainly to put the

methods of the preceding chapters into some kind of perspective.

4.1 UTILIZING SPECTROSCOPIC DATA

In addition to the approaches utilized in the preceding chapters,
there are two other, somewhat older procedures for determining diatomic
potential wells from experimental vibrational-rotational energy levels.
The first of these is due to Dunham,8 who used the WKB approximation to

relate the constants Ynm in the expression for the energy levels,

B0 = 2, e IO Y,
n,m

to the coefficients of a polynomial expansion of the potential about
its equilibrium internuclear distance. Sandeman9 then inverted Dunham's
relations, expressing turning points at a given energy E in terms of the

Ynm . Two decades later, Jarmainlo cast the RKR11 expressions into

Sandeman's9 form and found that the Dunham8 and RKR11 methods are for-

P

mally equivalent. Finally, Davies and Vanderslicelz proved that for

all energies up to the dissoeciation limit, this equivalence holds, and

b

the Jarmain-Sandeman series is convergent. However, despite the

9,10

equivalence of the two procedures, the Jarmain-Sandeman series has
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been virtually ignored, while the RKR approachll is very popular.

In the second general method, Dunham's8 polynomial in the inter-
nuclear distance R is replaced by a simple parameterized analytic
potential function. The most familiar expression of this kind is the Morse
potential, for which the simple exact relation between the parameters

and the vibrational eigenvalues is well known;13914

However, in most
other cases exact expressions for the eigenvalues in terms of the
potential parameters are not known, and this approach becomes an
approximate form of the Dunham8 procedure. The chosen (usually 3- or
5-parameter) algebraic function is expanded about its minimum as a power
series in R , and the characteristic parameters extracted from the
experimental Ynm values using Dunham’s8 relations for the power series
coefﬁicients, For a wide variety of such functions, comparisons have
been made of both their ability to reproduce experimental eigenvalues,
and their agreement with the more general RKR potential curves.15316

No strong prediliction for any particular analytic form was shown, other
than the expected conclusion that the 5-parameter potentials are better

than the 3-parameter ones@ls’l6

In any case, this approach is only
suitable when the limited flexibility of the parameterized potential can
accurately accéﬁﬁt for all the experimental data; in practice, this
means when there are very few data.

A rather different means of utilizing experimental vibrational-
rotational energies to determine interatomiec potentials has been proposed
by Bernstein517 He derived an expression relating the nature of the

long-range potential tail to the observed breaking-off of rotational series

due to predissociation through the centrifugal potential barrier.



This is discussed further in part V of Chapter 7.

All of the methods discussed up to this point use vibrational-
rotational eigenvalue data to determine attractive potential wells.,

On the other hand, the frequency and temperature dependance of the
intensity of absorption or emission into the continuum region above the
molecular dissociation limit ean in prineiple yield purely repulsive
potential functions, or the short-range repulsive part of attractive
potentials. This approach is discussed in part IIIC of the review by
Mason and Monchick,l8 and examples of more recent work are the present
Refs.(19-24), While it shows promise, very few potentials have as yet
been obtained in this manner, and conclusions regarding their uniqueness
and accuracy should await further investigationms.

A more efficient utilization of continuum absorption/emission
intensities is in conjunction with the results of a §elocity analysis of
the photodissociation products. The latter have recently become ob-
tainable by the techniques developed by Wilson and co—workers.25 While
too new to have become a widely used tool, this development25 is very

propitious.

4.2 UTILIZING NON-SPECTROSCOPIC DATA

The spectroscopic methods considered above are essentially com~
plementary to most other procedures for determining potentials. This is
because the selection rules for optical transitions allow the study of
individual potential curves among the profusion of molecular states which

arise from the interaction of atoms with unfilled valenece shells.



In most other methods, all energetically accessible states contribute
concurrently to the experimental observables. Thus, the non-spectroscopic
methods may only be effectively applied to the study of interactions in
which at least one of the atoms is a closed-shell (inert-gas) species, as
only then do the particles have just a single possible potential curve.
However, this is the type of system for which the attractive potential
well will be relatively shallow, supporting few vibrational levels, and

is thus least appropriate for study by the WKB-based methods of

Chapters 2 and 3,

Molecular Beam Techniques

The determination of interatomic potentials from molecular beam
scattering measurements has lately received considerable attentien.18’26_36
The measurements are of two distinct kinds. Using a simple classical
analysis, high energy (collision energies E of ca. 1-100 eV) elastic
scattering yields information on the short-range repulsive foreces in a
region inaccessible to spectroscopic measurements. Accurate work of this
type has been done since 1940 and is well reviewed elsewhere.26332

Scattering data obtained at thermal emergies (E < 0.1 eV) may be
used to determine both the long-range attractive potential tail, and the
general features of a potential well. The former may be extracted
from the absolute wvalues of the total elastic cross section, in the form'
of the coefficient Cﬁ of the asymptotically-dominant inyeréé—power

potential term (in cases where only one potential is involved, n=6).

In this way C6 constants have been obtained for a wide variety of



29,33

systems. The characteristics of attractive potential wells may be

obtained from an analysis of the quantal features of the angle and energy

dependence of the cross section,zg’34

This is usually done by assuming

a plausible two~ or three~parameter model potential and varying the para-
meters until the experimental results are reproduced. In this way,
approximate values of the well depth and minimum position have been

29,33

obtained for a number of systems. In principle, however, an exact

inversion of the experimental data to yield accurately the whole of the

potential well is also possible.30’35

However, in practice this type
of approach has very stringent data requirements, and currently has

been successfully applied to very few systems.36

Bulk Properties

There exists a very extensive literature, accessible through
Refs.(1l,. 18, and 37-39), which contemplates the extraction of inter-
molecular potentials from virial coefficients and transport properties
of gases. In this work, one usually assumes a model potential function,
calculates the desired properties from statistical mechanics,l and then
varies the potentiéi parameters and repeats the caleculation until the
best possible agreement with experiment is obtained. However, signi-
ficant ambiguities can‘qccﬁf; for example, it is well known that the
second virial coefficients of a number of simple molecules are fairly
well reproduced by a number of potentdals with quite different shapes,

1,18

having in common only the area of their potential wells. It is only

relatively recently that quantitative studies of these ambiguities have
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been made.38’39

It is apparent that this uniqueness problem
should be carefully considered whenever a high degree of accuracy is
expected. Despite these diffieculties, the analysis of bulk properties
is a very important source of information on intermolecular forces.
However, only in a few cases where the data are particularly extensive
do the potentials obtained approach "'spectroscopic" accuracy.AO

Another macroscopic property which can yield approximate potential
ﬁells is the equilibrium constant between the molecular state and the
dissociated atoms. For an assumed parameterized potential form, the
unknowns may be determined from its absolute value and temperature
dependence. This type of procedure may sometimes be applied to equi-
librium constants extracted from chemical rate measurements, and while
the potential obtained is quite crude, better estimates may not be
available from other sources. An example of this type of problem is
the determination of the I-Ar potential from atomic iodine recombination

measurements, presented in Appendix B.

Addenda

In addition to the features discussed above, information on inter-
atomic potentials may be extracted from a number of other physiecal
properties, including thermal diffusion in gases and the properties of

condensed phases.18a38,41

However, these are currently less widely used
than the techniques already mentioned, and their omission does not
detract from the present purpose of putting the spectroscopic methods

of Chapters 2 and 3 into perspective.
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5. TESTING AND CORRECTING A GIVEN POTENTIAL: GROUND-STATE (X lZ+) H2
g

The accuracy of most empirical or ab initio potentials in the
region V(R) < 0 may be tested by calculating their vibrational eigen-
values and comparing them to experiment. Discrepancies may then be
accounted for in terms of errors in the potential, and a suitable
correction function derived. When this was done (below) for the
theoretical ground-state H2 potential of KoZos and Wolniewicz,l two
possible corrections A' and A" were derived, corresponding respectively
to assuming the existence of error in either the experimental,2 or
the theoretical dissociation energy. Herzberg's new measurements3
have since resolved this choice in favor of the latter, soAthe correc—
tion function A' and its implications should now be ignored. The
accuracy of the proper correction function, A", is discussed further
in part IV of Chapter 7.

The work presented below is reprinted from the Journal of
Chemical Physics, Volume 49, pp. 4312-4321 (American Institute of

Physics, New York, 1968).
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‘Dissociation Energy and Vibrational Terms of Ground-State (X '2,*) Hydrogén*.
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(Received 20 May 1968) ‘

v

In an attempt to elucidate the discrepancy between the theoretical and experimental dissocfation energies
of H;, accurate binding energies and term differences have been computed for the 15 vibrational levels
using the Kolos and Wolniewicz clamped-nuclei potential with its various corrections. ‘The results suggest
possible interpretations of the discrepancy. In one of these an extrapolation method is injroduced which
combines experimental term differences with computed binding energies for the uppermof levels to yield
the dissociation energy; this result is in accord with the experimental value of Herzberg and Monfils. The
effect of uncertainties in the values of the natural constants is considered. Apparent incongjstencies between

previously computed vibrational energies are explained,

I INTRODUCTION

Considerable attention has been devoted to the prob-

. lem of accurate ab initic computation of the dissocia-

tion energy and vibrational terms of the various isotopic
forms of hydrogen. For the best studied case of ground-

. state Hy, a discrepancy of some 4 c™? exists between

Herzberg and Monfils’ possible experimental value of
the dissociation energy,! 36 113.6(=:0.3) cmt, and the
“fully corrected” theoretical value of Kolos and Wol-
niewicz (KW),? 361174 c¢m~!. This discrepancy is
especially serious since the theoretical value is a vari-
ational result (except for —0.2 cm™? due to the radiative

" correction) and is thus expected to be a lower bound.

A serious but less publicized discrepancy exists between
the observed? and computed®**® vibrational term differ-
ences; the experimental AG,yy. values (accurate to

005 em™) differ with the calculated ones by an

accumulated total of ~4 cm™ over the 15 vibrational

. levels. It is not clear whether or not these two dis-
" .- crepancies are related. ,
In the present study, the computed vibrational spec-

trum is used as a measure of the local accuracy of the
theoretical potential. Corresponding to two of the pos-

- sible interpretations of the source of the disagreement

between theory and experiment, two empirical “correc-
tion functions” to the KW potential are presented for
consideration. )

* Research sgpported by National Science Foundation Grant
GP-7409 and National Aeronautics and Space Administration
Grant NsG-275-62,

! G. Herzberg and A, Monfils, J. Mol. Spectry. 5, 482 (1960).
The value given corresponds to the B'(33,*) assignment of the
upper state of the observed transition. Their alternate assign-
ment, the C(*I1,) state corresponding to De==36 113.0(== 0.3 cm™),
is made very unlikely by ab #néfio computations of the potential
for this state which show it to possess a barrier with a maximum

. of ~100 cm™1,

3 (a) W. Kolos and L. Wolniewicz, Phys, Rev. Letters 20, 243

(1968); (b) J. Chem. Phys, 49, 404 (1968).

3 G, Herzberg and L. L. Howe, Can. J. Phys. 37, 636 (1959).

4 J. K. Cashion, J. Chem. Phys. 45, 1037 (1966).

¢ L. Wolniewicz, J. Chem, Phys. 45, 515 (1966).

% J. D. Poll and G. Karl, Can. J. Phys. 44, 1467 (1966),
(1;'61‘7')& Waech and R, B. Bernstein, J. Chem. Phys. 46, 4905

8D, F, Zetik and F, A, Matsen, J. Mol. Spectry, 24, 122 (1967).

®F. M, Greenawalt and A. S. Dickinson, J. Mol. Spectry.
(unpublished). ' e

Ii. METHOD

A, Vibrational Eigenvalues as a Local Testv of the
Accuracy of a Potential .

For any given diatomic intérnuclear potential, exact
bound-state eigenfunctions ang eigenvalues may be effi~
ciently computed#'? In addition, it may be shown
(see Appendix A) that a givé'n eigenvalue is especially
sensitive to small changes in the potential in the im-~
mediate neighborhood of its two turning points Ry(v)
and Ry(v). For the higher levels, this dependence is
increasingly weighted towards the outer turning point
Ry(v). The inverse problem of deriving a potential
“correction function” which would remove the differ-
ence between computed and o§served energies may also
be solved uniquely, provided;that the maximum error
in the original theoretical pq"%ential is everywhere rea-
sonably small. The results in’ Appendix A indicate that
this inversion is possible for Hy if the KW potential?.#3:14
is accurate to better than about 10 cm™ over the range
of the turning points of the 15 vibrational levels. That
this is the case is shown by the approximate (45 cm™)
agreement between its computed eigenvalue spectrum
and experiment. ‘

B. Method of Comparing Computed and Observed
Eigenvalues

The customary comparison of computed and ob-
served vibrational-rotational energies via the quantity
To(v, J)=[T(v,"T)—T(0, 0)] (e.g., Ref. 7) is un-
desirable here, since it assumes that the absolute value
of the energy computed for the ground (v=0, J=0)
state agrees with experiment. A better approach would
be to compare the binding energies’® E;(v). However,
the +0.3 cm™ uncertainty in the experimental Dy

1o 7, W. Cooley, Math. Computation 18, 363 (1961),

1 1, K. Cashion, J, Chem. Phys. 39, 1872 (1963).

12 H, Harrison and R. B, Bernstein, J. Chem. Phys. 38, 2135
(1963); 47, 1884 (1967), Erratum.

12 W, Kotos and L. Wolniewicz, J. Chem. Phys, 41, 3663 %1964) .

¥ W, Kolos and L. Wolniewicz, J. Chem. Phys, 43, 2429 (1965).

® Throughout, the “binding energy” of a given level is the
cnergy difference between that level and the asymptote of the
potential, while “dissociation energy” vefers to the binding
energy of the =0, J=0 level,

4312
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4313 GROUND-STATE (X'2,*) HYDROGEN

 would yield experimental binding energies with un-

certainties too great for the current analysis.

The present approach combines the accurate observed
vibrational spacings (reported to 0.01 cm™') with the
precise binding energies computed from the best avail-
able potential. As is illustrated in Fig. 1, the experi-
mental and computed levels for a given v are matched,
and the computed binding energy is added to the
experimental vibrational energy to yield an “appar-
ent” ground-state dissociation energy, defined Do(v) =
[Es(v)+To(», 0)]. If the theoretical potential were

" exact, the curve of Dy(v) vs » would be horizontal at

the true dissociation energy since the difference be-
tween each Do(v) and the true Dy is merely the error
in the computed Ey(v). Otherwise, [ Dy(v+1) — Do(v) ]
is the negative of the error in the computed AG,4q2 s0

" -that a Do(p) curve is effectively a second-order Birge~

Sponer plot with unknown ordinate zero. It will be
seen (in Sec. IV.B) that under certain conditions this

.- type of plot may be used in an extrapolation procedure
- to yield the “true” Dy,

III. CALCULATIONS

A. Computation of Vibrational Energies

Vibrational eigenvalues were obtained by solving the

- radial Schrodinger equation numerically using a modi-

fied version of the Cooley—Cashion program.®! (See

- Appendix B for a comparison of this with the Harrison

and Bernstein® and Zetik and Matsen®? methods.)
The integration is performed on the equation ex-

36li} . - OBSERVED COMPUTED

3612t . "__""" 3611207

| .

= + 13010 -
/AL g _  D414) 3611207000
35970 ’ i

2196 < 62025

vel3 _______P B SR
171

w o
g &
s 2

ENERGY ABOVE OBSERVED v*O LEVEL (CM™)

T Dfi21=qi4)-2.31

Fi16. 1. Derivation of Dy(v) values by matching computed and

. observed levels at 9=14, The number 36 112,07 [i.e., Do(14)]

would equal the dissociation energy if the computed value of
E;(14) were exactly correct. Here the Ey(p) were obtained for the

relativistic, adiabatic KW potential (using nuclear reduced mass),

pressed in the reduced form ,
(Y /dz®) +B.LE*~ V*(2) ]V =0, (1)

where 2=R/Rn, V(2)=2x(R), E*=Efe, V*(z)=
V(R) /e, and B,=2ueR.2/h?; the parameters R, and
¢ are arbitrary scaling factorg (usually chosen close to
R, and D). The reduced njpss used for most of the
computations was that for wo protons. Despite the
contrary arguments of Cashjén,* this appears to be the
correct choice of mass sirgée Eq. (1) describes the
motion of the nuclei in an’ effective potential arising
from the field of the electrons. The total potential V(R)
includes the usual clamped-nyglei and centrifugal po-
tentials, and for most of the galculations it contained
the relativistic and nuclear mption (adiabatic) correc-
tions as well. The integrationwas carried out over the
interval 0.4<R<10 a.u, anl} the increment used (the
“mesh size”) was 0.007 a.u. Expanding the interval -
or decreasing the mesh size affected the eigenvalues
negligibly (i.e., by <0.01 em™). S

The required physical constants are all collected in
the factor B,=3.64566X10ueR,2(£0.5X102 7)1
where p is the reduced mass in “unified” atomic mass

units (¥C=12), and ¢ and R, are both expressed in = .

‘atomic units. The effect on the eigenvalues of error in
the physical constants is tempered by the radial kinetic-
energy factor Tx=[E—V(z}] with which B, is com-.
bined in Eq. (1). To a firgt approximation, a given

error in B,, say AB,, introduces an error s

AE,=— (ABz/Ba) ('” l Tk l ”) (2)

to the computed energy for level v. The kinetic energies
{v| Tx | v) (e.g. those later presented in Table III)
cause the effect of error in the physical constants to
diminish for levels approaching either the top or the
bottom of the well, while reaching a maximum about
2 of the way up. An adjustment of the electron mass!®:¥
changing B, by one standard error (2£0.5X1073 9)
affects the H, vibrational energies for levels 6-11 (where
{v| Tx | v) is greatest) by ~0.06 cm™, while affect-
ing the v=0 energy by less than F0.01 cm™.

B. Effect of Interpolatiog on Eigenvalue Precision

The KW clamped-nuclei potential for Hy was re-
ported at 87 points in the interval 0.4<R<10 au,
while ~1500 points are needed in the numerical inte-
gration. The interpolation between the given points is
therefore very critical, and indeed appears to be the
major source of eigenvalue imprecision.

16 With p, €, and R, expressed in unified atomic mass units
(2C=12) and atomic units, the numerical part of B, is just 2/m,

where m, is the electron mass in atomic mass units. The uncer-
tainty is the standard error in the best known value of m, ¥

The uncertainties in the nuclear and atomic reduced mass of Hy .

(11=0.50363831 and 0.50391261 amu, respectively), contribute
negligible error to B,, )
(1‘97655 R. Cohen and J. W, DuMond, Rev, Mod. Phys. 37, 537
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The accuracies of several interpolation schemes were

" . tested by omitting in turn each of the computed KW
" clamped-nuclei points, and comparing the ith omitted

value Vew(R;) to that obtained by interpolation over
the remaining data, Vin(R;). All of the methods used
were piecewise fits which selected an equal number of
the given points from either side of the desired value. It

~ is clear that interpolating over {R2Vxw(R:)} (as sug-

- gested by Poll and Karl®) rather than over {Viw(R:)}
* . significantly improves the results. The interpolations giv-

" ing rise to the differences AV;=[Vxw (R:)— Vine(Rs) ]

" in Fig. 2 used 85 of the KW* points, the entries at

R=1.400 and 1.401 a.u. being omitted.”® Figure 2 also

. shows the effect on the computed eigenvalues of using
- different interpolation schemes, the binding energies
- .obtained via the piecewise seventh-degree polynomial
. interpolation over {R2Vxw(R;)} being used as a refer-
. ence. The precision of the best results is ~=-0.02 cm™,
" " Combining this interpolation imprecision with the un-

certainty in B, shows that the accuracy with which
18 The KW points at 1.400 and 1,401 a.u. were omitted from

. the interpolations since their inclusion yielded an anomalously
_ high density of data in this region, producing erroneously large

errors (large AV;) at adjacent points interpolated using the
higher-order (seventh- and ninth-order) polynomials!® The
removal of these two values changed the potential yielded by the
piecewise seventh-order-polynomial interfo}ation enough to
evel by 0.035 cm™,
though it affected bigher levels by less than 0.01 cm™,
¥ The Lagrangian interpolation subroutine of R, N, Zare
[ University of California Radiation Laboratory Report, UCRL-
10925, 1963, (unpublished)] was used for all of our piecewise
polynomial interpolations, :

L\ seume | A
N SARAA s i ' .'A S
«}0 i
: ANV <
- X
M s oRoER FOLY, -
S LA AN TV N 1111 A PN ' A )
' : TG, 2. %%mparison of cffccts of divers .
-101 interpolatiop schemes I(;n t‘}}e pot{:,nti;d
: . and 1its eiginvalues, AV = (View—Vin)}
T NN ¢ AEy={ Eyfgeventh-order po§ynomial o:/ext
. 5 19 i 7™ oroer PoLY. | ) (R2V) ]~ fa(other) }. --++ Interpolation
> i i Ap At 8 A W over {R*Frw(R;)}; —— Interpolation
= FAN M AABRSEA AL ARSI 1A ITAREY . i over [Vgw(R,)}. Note the several .
N H B different ‘scales on the right ordinate,
1% Case A uses eight point third-order spline
Sl A ‘ fits; Case B uses fifth-order polynomials;
10 9" ORDER POLY. v ; D Case C uses seventh-order polynomials;
: T 1 i Case D uses njnth-order polynomials; an
|J,_(Lx',‘,.,, pa DA ,'\'l'l‘|"'A' A Case E uses the analytic formulaof Ref. 7. -
. W8 {1967) €
7 ML aal Py~ A
-05 v vy e
20 * 60 T AN I S
R(au) v

our computed eigenvalues “reflect” the KW potential
lies within the limits +0.03 cy™ (for v=0) and =:0.08
cm™! (for v=06-11). ‘

The differences AV; in Parts A-D of Fig. 2 are,
however, considerably larger than the actual error in
V(R) carried into the eigenvalue calculation, since the
interpolated potential actually used is constrained to
pass through all the KW points. In Pdrt E, on the
other hand, the differences AV; are the actual errors
in the analytical potential® of Ref. 7.

C. The Total Potential V(R)

In the present work a smooth clamped-nuclei poten-
tial was obtained in the interval 045<R<9.0 au.
using a series of seventh-order-polynomial fits® over
{R#Vxw(Rs)} to 85 of the 8718 KW (1965) points.
At the ends of this range where the numerical inter-
polation becomes least accurate (see Fig. 2) the poten-.
tial was extrapolated analytically. For R<0.45 a.u. it
was approximated by a function of the form V(R)=
A/RB4-C, where the three constants were determined
by fitting the function to the three KW points at
smallest R. For R>9.0 a.u. the potential was repre-
sented by a theoretical five-term analytical expression
derived from perturbation theory. The Cs, Cs, Cuo, and

¥ The analytic fit of Ref. 7 [using the method of G. E, Forsythe
J. Soc, Ind. Appl. Math, 5, 74 (1957)] of the whole potentia
to a single polynomial expreasion of 32nd degree i of coursae not
coxllstruined to give precise agreement with il 87 reported KW%
values. « C :
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Tapie I. Difference between KW clamped-nuclei-potential® and perturbation-theory results.b
R(au.) 7.0 7.2 7.6 7.8 8.0 8.25 8.5 9,0 9.5 10.0

Epipn— Exgw(cm™) 2.26 1.27 0.72 0.53
~— Exw(cm™) 41,56  31.47  19.05  14.97

0.24 0.1 0.13 =—0.15 —0.11  0.11
.74 8.87 6.8 4,06 2.66  2.00

T

& Reference 14, b Reference 21.  © Reference 22,

Cu inverse-power potential constants and the exponen-
tial expression for the exchange contribution were taken
from Hirschfelder and Meath.? Table I shows the
agreement between the KW potential and the above
-extrapolation over the range R=7-10 a.u.”® Since these
long-range (for 9<R<10 a.u.) and short-range (for
0.40<R<0.45 a.u.) extrapolations are applied to R

“ . wvalues outside the range of the classical turning points
“ of the highest vibrational level [(R;(14)=20.78 a.u.

~ and Ry(14)226.2 a.u.], any errors they introduce are
"~ expected to produce a negligible effect on the eigen-

values.
Series of third-order polynomials were used to inter-

- polate between the KW values of the relativistic and

nuclear motion (adiabatic) corrections. Beyond the
range of their computations, the relativistic correction
at large R and the adiabatic correction at small R were
extrapolated using analytic functions,® errors in which

- would at worst introduce errors of ~0.03 cm™ in the

‘computed eigenvalues for levels above v=11. In addi-
tion, the adiabatic correction at large R was approxi-
mated by an exponential fitted to pass through the
last two values at finite R and decaying to the asymp-
tote. Although other workers?5¢ have used significantly

- different extrapolations, the exponential tail seems most

reasonable in view of its excellent qualitative agreement

- (see Fig. 3) with the correction computed from the

expressions derived by Van Vieck.? Inaccuracy in this

2 J, O. Hirschfelder and W, J. Meath, Advan. Chem, Phys.
12, 3 (1967). '

22 It has been fointed out by P, R, Certain, J. O. Hirschfelder.
W. Kolos, and L. Wolniewicz [J. Chem. Phys. 49, 24 (1968)j
that a calculation using an improved basis set of electronic wave-

.. 'functions lowers the KW clamped-nuclei energy at 8.0 a.u. by
- 0.15 em™ to —11.74 em™, This improved value was used in

‘Table I. It should be remembered that the estimated rounding
errors in the single-precision KW clamped-nuclei results were
stated to be -£0.1 cm™,

% The relativistic correction at large R was approximated by
an exponential fitted to the last two KW points at finite R and
decaying to the asymptote, a distance of 0.42 cm™1. The adiabatic
correction for R<0.6 a.u. was extrapolated by an exponential
fitted to pass through the two KW ;])oints at smallest R (absolute

ues expressed relative to the
asymptote). Since the latter extrapolation begins at 0.6 a.u. <
Ri(14)220.78 a.u,, it could introduce only negligible errors to
the computed eigenvalues.

% J. H. Van Vieck, J. Chem. Phys. 4, 327 (1936). Although the -

Wang electronic wavefunction used by Van Vleck is relatively
inappropriate at small R, it becomes increasingly suitable as R
increases through the region in question and is almost exact at
the asymptote, Values of the Wang function’s variational expo-
nential parameter were derived by extrapolating over the values
reported by J. O. Hirschfelder and J, W, Einnett {J. Chem. Phys.
18, 130 (1950)7]. Equation (51) in this paper by Van Vleck
contains an extranecous factor of b3, ' .

extrapolation could at worg introduce errors of ~0.5
cm™ in the eigenvalues gomputed for levels above
p=10.

D. The Nonadiabatic Correction

The nonadiabatic correctiog to the eigenvalues aris-
ing from the coupling of thg ground state to excited
electronic states was approimated by a formula de-

rived by Van Vleck? (and jgecently used by Poll and o

Karl®). This treatment starfs with a second-order per-
turbation energy, and by using an Unséld approxima-

tion and summing over complete sets of vibrational .-

and electronic states yields the following expression:

AR() == (o Tie| )

z 32 Rs |
£ ) @

H
where v is the Unsold enelggy, Tk is the radial kinetic
energy, and the third factor is an expectation value

X <<I>, (e R)

. over the electronic coordinates of the ground state,

evaluated with the nuclei separated by E,=(v| R|v).
This factor is one of those contributing to the adiabatic
correction, for which Van Vleck had derived an analytic
expression. The value initially chosen for the Unsold
energy, vo= 1.35X 10° cm™, was derived® from consider-
ation of sums of a different type of matrix element and

. may be somewhat inaccurate. It may be more correct,

too, to replace »g by vy=[p—To(v, 0)]. The expecta-
tion values (v| Tk | v) are readily evaluated from the
radial wavefunctions which are obtained from the eigen-
value calculation,

1V, RESULTS

A. Sources of Disagreement of Previous
Computed Eigenvalues

Several calculated sets of vibrational eigenvalues for
the KW potential have already been published.*-*
Waech and Bernstein’ compared those results sup-
posedly based on the clamped-nuclei potential and
found discrepancies of up to 12 cm~' Upon further
study it appears that these differences result from the
use of slightly different potentials and physical con-
stants. The most prominent single effect is due to the

% 1, H, Van Vieck and A. Frank, Proc. Natl. Acad. Sci. (U.S.)
15, 539 (1929). - ; e e}
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are the 1964 KW points; V(1936) comes
from the Van Vileck formulation®;
KW (1968), 1968 KW?* graphical extrap-
olation; LB(EXP), present authors®
exponential extrapolation; and W(1966),
olniewicz'® linear extrapolation.

Em(cﬁi") a .

i < ies)

i ' [ | 1 i : N
| 2 4 6
j‘ Riau)
,3 TABLE IT. Dy® (o) results.®
i |
‘ o \ i=1 2 3 4 | 5
ot N D D) Awe . Do) Aexe Dy(v) Ac  Aws " D(»)  Aww  Dere
3 0 " 36118.0 36117.9 0.0 - 36117.4 0.0 36 112.8 0.0 0.2 36 112.2 0.0 —1.0
i 1 181 17.0 0.1 s 16.4 0.1 11.5 0.0 0.4 09.8 0.0 —-1.1
; 2 18.2 16.2 -+ 0.1 15.6 0.1 16.5 —0.1 0.4 07.9 0.0 -1.1
! "3 7.7 149 0.1 14.3 0.1 09.1 . -0.5 0.6 05.7 0.1 -1.0
: 4 17.6 14.0 0.1 13.4 0.1 08.3 -0.9 0.6 © 04,2 0.1 —1.3
. 5. 17.3 13.3 0.2 12.7 0.2 07.7 —~1.6 0.6 03.0 0.1 -1.9
X 6 17.0 12.4 0.2 11.8 0.2 . 07.2 -2.8 0.7 02.0 0.1 ~3.0
: -7 16.6 1.7 0.2 11.2 0.2 07.0 —4.5 0.7 01.5 0.1 —4.6
: 8+ 7 16.2 1.2 0.2 10.6 0.3 07.0 -7.5 0.6 01.4 0.1 -7.6
! "9 15.8 10,7 0.2 10.2 0.3 07.3 —11.9 0.6 01.7 0.1
10 15.3 10.3 0.3 - 09.9 0.3 07.7 0.6 02.3 0.1
11 14.7 10.1 0.8 09.7 0.2 08.3 0.5 03.4 0.2
12 13.9 10.1 1.8 09.7 0.2 08.9 0.4: 04.7 0.2
13 13.4 10.6 . 10.3 ~0.6 10.0 0.3 06.9
14 13.6 12.2 12.1 -0.4 12.0 0.2 10.5

2 A is the amount (in ecm™t) by which the previously reported Ep(s) Waech and Bernstein? The parameter { denotes a particular choice of

compares present results to those of Wolniewicz; Apg compares with  nonrelativistic, adiabatic, 4 nuclear; 3: relativistic, adiabatic, ps nuclear; 4:
. Poll and Karls; Ag compares with Cashiont; and Awp compares with  clamped nuclei, s atomic; and 5: elamped nuclel, a nuclear,

[

i
W : ]
i 36il6} ;
0% -
1 LT F16. 4. Dy (v) curves plotted from the
| B ] e results in Table I The curves were
j e ‘ N4 A .1  derived by piecewise interpolation with
H - = 36108} NG , ) series of second-order polynomials. The
4 s o — ) “bumps” at v=2 are explained in_Sec.
ik 5 - {  IV.A
: - ]
it _
#i SR b
i
¥ - 36100}f J
; 1 o 5 v i0 15
: .

' Fro. 3. {‘\Tgclear motion correction,” O

i lJand hence Do(y)} exceeds that computed here for the same cace. Aw  potential and reduced mass: §=1: relativistic, adiabatic, & atomic; 2: .
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use of different values for the reduced mass; in some
of the studies®” the atomic rather than the nuclear
masses were used.® The various possible cases have
now been analyzed and sets of apparent dissociation
energies DyP(v) have been computed for five of them
“ (t=1, «s», 5). These are plotted in Fig. 4 and are
compared to the previously published results in Table
II. The causes of the remaining differences A between
the present results and those reported previously for
the same case, are given below.
The largest differences, Ac and Apg(ws), both arise
from their use of the earlier {1964), less-accurate ver-
. sions® of the clamped nuclei potential.” In Awy and
Apxe the escalating deviance above v=0 corresponds
to the use of extrapolations of the nuclear motion cor-

. rection differing markedly from that used here. The
linear extrapolation of Wolniewicz® (Aw(y) is shown by
Fig. 3 to be much too coarse.

The remainder of Awy and Apxa as well as Awg
and much of Awp may be quantitatively explained in
terms of the effect of error in the physical constants, dis-
cussed in Sec. ITI.A. Wolniewicz,b Poll and Karl$ and
Waech and Bernstein? used values of B, which were all
too large® by, respectively, 1.3X10~2 %, 1.2X10% 9,

~and 8.7X10? %. Upon substituting these differences
-into Eq. (2) along with the kinetic energies from Table
ITI, most of the given A’s are explained, except that
portion of Awp which Fig. 2 shows to be due to the
Waech and Bernstein interpolation procedure. Some
small errors in the earlier work are also due to the use
by Waech and Bernstein’ and Poll and Karl® of inte-
gration meshes two,and three times larger than used
- here.

 The differences between results calculated using the
same potential but slightly difierent reduced masses
. (e.g., compare -cases 1=1 and 4, respectively, to ¢=3

“and 5) are also quantitatively explained in terms of
the effect of the difference in reduced mass on the B,
factor. Changing from nuclear to atomic reduced mass
increases B, by 0.0545%,, which when substituted in

~Eq. (2) yields the observed differences.

Since none of the curves in Fig. 4 are flat, none of
the sets 4=1, ++ <, 5 yield vibrational spectra in agree-
ment with experiment; also, the relativistic adiabatic
p-nuclear (1=3) curve which should be best appears
worse than the corresponding p-atomic case (i=1).

% We are indebted to Dr, T. G. Waech for bringing this to our
attention,

7 Poll and Karl® (Apgm) used the energies computed with
S4-term electronic wavefunctions over the whole of the interval
0.4<R<L3.7 an., and Cashion* (Ac) added to these the more
accurate potential energies reported in the more restricted
interval about the minimum 0.55<R<2.0 au.

2 With the Cohen and DuMond?” constants as a reference,
Wolniewicz® used a reduced mass which is ~1.3 X108 %, too large,
Poll and Karl® used a value of the Bohr radius 0.6)X102 % too
large, and Waech and Bernstein® used values of Planck’s constant
and the Bohr radius which were, respectively, 6.X10-¢ %, too
small and 1,102 % too large. . :

81
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TabLE III. Results from the 1968 relativistic
adiabatic KW pqtcntial.ﬁ

v By )b Dy(v) | Txle) AE(r) AE'(w)
0 36 117.54¢ 36 117.5 ~ 1079, ~0.65 ~0.65
i 31 955.4 16.6 3040, ~1.8 ~1.89
2 28 028.78 15.8 4770, -2.80 ~3.07
3 24 332.61 15.0 6 275, ~3.82 —4.19
4 20 863.88 14.2 7555, —4.59 ~5.17
5 17 621.61 13.5 8 609. ~~5.15 --5.97 .
6 14 607.10 12.8 9 427, ~5.67 —-6.74
7 11 824.31 12.1 9 996, —6.03 ~7.35
"8 9 280.42 11.4 10 292 ~6.27 ~7.82
9 6 986.80 10.7 10 278. -6.33 -—8.07
10 4 960.09 10.3 9904, --6.16 -~8.01
11 3 223.20 10.1 9 098, ~5.69 ~7.53
12 1 808.15 10.0 7754, —~4.84 —6.49
13 759.48 10.5 5713, ~3.51 -4.76
14 139.16 12.1 2755, ~1.65 ~-2.24

@ All energies are in em™, The kigitic energies are approximately the

same as for cases £==1, +++, §in Tabl§ 11. AE(9), the nonadiabatic correc~ * *

tion to the energy, is the negative of the correction to the binding energy

and to Do(v), The unprimed nonadiabatic correction was evaluated using.

ve and corresponds to Curve B in Fig. 5, while AE/(s) was evaluated
using the adjusted Unesld energies v, and yielded Curve C,

b As indicated in Secs. IILA and II_I;B. these eigenvalueg reflect the
KW potential with accuracies ranging from -£0.03 cm~t to £0.08 em-1, ~
They may not be directly compared tot;fhe most recent KW results? since
the latter did not include the relativistic forrection in the effective potential,

The addition of the nonadigbatic correction improves
the situation, but it will befshown that results for the
theoretically best case still do not yield the observed
vibrational ladder. .

All of the curves in Fig. 4 exhibit an anomalous
“bump” at v=2 which is due to small errors in the
Herzberg and Howe® energies for v=1 and 2.® These
have been remeasured®-® and the most recent data®
give To(1, 0)=4161.181 cm™! and Ty(2, 0)==8087.01
cm~, Substituting these values for those of Herzberg
and Howe increases all Dy(1) values in Table IT and
Fig. 4 by 0.04 cm™, and decreases all Dy(2) values by
0.10 cm™!, completely removing the apparent anomaly.

B. The Dissociation Energy and the
Vibrational Spectrum

In the following work the Herzberg and Howe® vi-
brational ladder is used with the addition of the cor-
rected experimental values of To(1, 0) and Ty(2, 0)
given above. The eigenvalues reported below were com-
puted (using the nuclear reduced mass) from the rela-
tivistic adiabatic potential described in Sec. I11.C, with

» The Herzberg-Howe results? are a composite of three sets
of nonoverlapping experimental data: their own Lyman-band
measurements which place the levels v=3 to 14 relatively, B. P.
Stoicheff’s [Can. J. Phys. 35, 730 (1957)] Raman data for the
9=0-1 transition, and G. Herzberg’s [Can. J. Res. A28, 144,
(1950) ] pioneering quadrupole absorption measurements of the
v=0-2 and 0-3 transitions (as reinterpreted by Stoicheff),

% C. H. Church, Ph.D, thesis, University of Michigan, Ann
Arbor, Mich., Rept. UMRI-2609-3-T, 1959 (unpublished).

# U, Fink, T. A. Wiggins, and D. H, Rank, J. Mol. Spectry.
185:3384v(112615)' D. H. Rank, and T\ A. Wiggins, J. Mol, §

. V. Foltz, D, H, Rank, and T, A, Wiggins, J. Mol Spectry.
21, 203 (1966). . fegins, J pecHy
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(1968) potential. Curve A corresponds to
Column 3 in Table III; B and C include
the nonadiabatic corrections from Col-

the nonadiabatic correction, A’, B', and
C’, and A", B", and C", respectively,
illustrate the effect on Curves A, B an

Fig. 6 to the effective potential,

: vl‘_one modification; KW’s 1965 clamped-nuclei results in
the interval 1.0<R<3.2 a.u. have been replaced by
! " their more recent? double-precision results.*
. In Appendix A it is shown that eigenvalues com-
< puted for the highest vibrational levels are most sensi-
 tive to the accuracy of the potential just inside their
- respective outer turning points. This is confirmed by
" the convergence of the several curves in Fig, 4 at
- 9=14.71(=-0.02) .» This occurs because the relativistic
" and adiabatic corrections monotonically approach their
asymptotes over the range of the Ry(v) for the highest
~ levels, thus causing the difference between the several
. effective potentials to approach zero in this region. It
" occurs despite the fact that these effective potentials
- differ significantly (by between +20 and —17 cm™
relative to the asymptote) over the region between the
' -+ turning points.
- By definition, Dy(v) is equal to the true dissociation
“energy if the computed binding energy for level v is
- correct. For the highest levels this is equivalent to
- ‘requiring that the potential be accurate in the neighbor-
.+ hood of Ry(v). Since the computed potential is exact
. at R=o, Dy(14.71) must equal the true dissociation
" energy, though the question may be raised whether
" the “true’ value of Dy(14.71) may be derived from a
" simple extrapolation on a graph such as Fig. 4. This is
. the case if the clamped-nuclei potential exhibits its
~ true asymptotic behavior in the interval spanned by
. the Ry(v)’s for the highest levels, or more precisely,
. _if the error in the clamped-nuclei potential monotoni-
" cally approaches zero in this interval. With this as-
" % Unfortunately the new values are reported only at 17 of the
29 original points on this interval. In order to minimize the inter-
polation error, the difference between the old and new results was
assumed to vary continuously (except for the expected discon-
tinuities® at 1.6 and 2.0 a.u.) and improved values were obtained
at all 29 original points. Omitting the thus improved points
affected the eigenvalues by as much as 0.05 cm1,
.. % Anerrorin the 1965 KW point at R:=1.6 a.u. has been pointed
- out by C. L. Beckel and J. P, Sattler [J. Mol. Spectry. 20, 153
(1966) ], while the discontinuity at R=2.0 a.u. is expected since
this is the point at which the 1965 KW results switched from an
- 80-term to a 54-term electronic wavefunction. The discontinuities
at these points are also evidenced by the relatively large ampli-
- .tudlg, in2 their neighborhoods, of the interpolation error functions
in Fig. 2.
% This uncertainty in the point of intersection is the average
;l:]:iation of the results of several different numerical extrapolation
... - ‘schemes, T e L . §

_ sumption, the present rcsultgf yield Do(14.71)=Do==’
36114.1(:0.2)% cm~', This yalue agrees within the . °
mutual uncertainties with fhe experimental value,‘,‘f‘

Dy=36113.6(£0.3) cm™.

. We have recomputed eigenvalues from the relativ- - -
istic adiabatic potential (including the improved 1968

clamped-nuclei results) and addéd in the nonadiabatic

correction, evaluating the lattefiusing both Van Vleck =
and Frank’s® Unstld energy vy, and the present “ad- "

justed” values », (Sec. IIL.D)% These results, given in
iI‘abl‘e III, yield the three soligd curves (A, B, and C)
in Fig. 5. Since the nonadiabatic correction is the same

for the several cases in Table II as it is here, Fig. §

shows that its addition does not affect the values of
the intersection point. The distance between Curves
B and C is a measure of the uncertainty in the non-
adiabatic correction, though it does not represent a

bound. The radiative correctiop to the energies is not

discussed here since Wolniewidz® has derived a bound

on its magnitude which is smaller than the uncertainty

n the nonadiabatic correction.

Lo, 1 1 1

-
5

R (ow

Fic. 6. Empirical ““correction functions” for the KW potential.
Addition of either of these functions, A’ or A”, to ¥ (R) induced a
ﬂattemné of the initially computed nonadiabatic Do(v) curves
(B and C)'in Fig. 5, corresponding to better agreement between
computed and observed vibrational spacings. The shaded regions

are an estimate of the nonuniqueness of the inversion of the.

primed and double-primed results in Fig. § which yielded A’ and
A", respectively. The v designations on the abscissae denote the
outer turning points Re(v). - .

F16. 5. Do(v) curves from best KW-

umns 5 and 6, respectively; the shaded
area is a measure of the uncertainty in

C of adding corrections A’ and A" in

e
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Since neither the adiabatic nor the nonadiabatic re-
sults reproduce the observed vibrational term differ-
ences within reasonable limits, we have derived two
possible “correction functions” for the potential, curves
A’ and A" in Fig. 6. The addition of these functions
" to the effective potential causes the eigenvalue calcula-

tion to yield the Dy(v) curves A’, B’, and C’ (corre-
sponding to A’), and A”, B”, and C” (corresponding
to A”) in Fig. 5. A’ and A” are uniquely determined.
by their respective Do(v) curves to within the indicated
uncertainties. The nonuniqueness of A’ at small R
arises since a given change in one of the lowest vibra-
tional eigenvalues could be induced by changes in the
potential at either or both turning points (se¢ Ap-
pendix A). The uncertainty in the tail of A” [for
. R> Ry(14)226.2 a.u.] arises since the eigenvalues are
_only slightly affected by small changes in the potential
- beyond the outer turning point; however, it seems
-likely that it should quickly approach zero for R>8 a.u.

" where the KW potential agrees with perturbation the-

ory results (see Table I).

V. DISCUSSION

Although the addition of the nonadiabatic correction
yields better agreement with experiment (compare B
“and C in Fig. 5, with A), the computed vibrational
ladder is still elongated relative to the experimental
one by an accumulated total of 4 cm™ (two orders of
magnitude greater than the uncertainty in the experi-
. mental data). This implies that the theoretical potential
. for R<Re(14) is stretched relative to the exact curve
by about 4 cm™, approximately the disagreement be-
tween the experimental and computed dissociation en-
ergies; of course the two disagreements may not be
related.
. If the two effects mentioned above are related, any
questioning of the accuracy of the experimental dis-
sociation energy is equally a questioning of the experi-
- mental term differences involving an accumulated total
of 4-cm™ error. Alternately, if the experimental dis-
sociation energy is assumed to be correct [agreeing
-~ with Dg(14.71)], the clamped-nuclei potential must
- be too deep by ~4 cm™. In this case the relative flat-
~ness of Curves B and C in Fig. 5 over the range v=0-8
merely indicates that the bowl of the KW 1. potential
has essentially the correct shape. The correction to the
_potential suggested by this interpretation is curve A’
in Fig. 6, and its “beneficial” effect on the eigenvalues
is shown by Curves A/, B/, and C’ in Fig. 5. These
nonadiabatic results (Curves B’ and C’) yield reason-
able agreement with both the observed vibrational
spectrum and dissociation energy. However, this inter-
pretation requires a reasonable accuracy (~z:0.5 cm™)
for the KW potential at large R (R=26 a.u.), and KW
- point out? that this part of the adiabatic potential is
expected to be less accurate than that in the vicinity
of equilibrium. On the other hand, the good agreement
with perturbation-theory results (see Table I) for

-8
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b
R>8 a.u. implies that the KW potential is indeed
quite accurate (e.g., =0.5 cm™1) in this region,” which
makes it seem unlikely that it be 4 cm? too shallow
at R=6 a.u. :

Another interpretation, believed by the present au-
thors to be less likely, would treat the disagreements |
of the dissociation energy and of the vibrational levels
as unrclated. The former would be due to some as yet
undiscovered error in the experimental work or its
interpretation,! the latter to error in the clamped-nuclei
potential at large R. This error (curve A” in Fig. 6)
would not exhibit its asympto#ic behavior (i.e., would
not monotonically approach géro) over the range of
Rz(v)’s for the highest levelg, thus invalidating the
extrapolation method suggestgfd in Sec. IV.B.

In a recent paper which also discusses the present
problem,2 KW arrived at a “final” theoretical value
for De(0) = Ep(0), of 36117.4 cmu—l. We see here that
the inclusion of the nonadiabafc correction which is
necessary for reducing the disdgreement with the ex-
perimental vibrational term djfferences increases this
to 36 118.0 cm™! [our nonadigbatic Dy(0) evaluated
from Table III, plus the radigtive correction] which
increases the disagreement with the experimental value
to 4.4 e, The variational contribution to this the-
oretical dissociation energy is 36 117.54 cm™, Thisisa .
rigorous upper bound® to the exact ground-state energy
of a fictitious system described by the KW adiabatic
Hamiltonian plus the Breit-Pauli approximation to
the relativistic correction. However, since this simpli-
fied total Hamiltonian cannot he expected to accurately
describe Hy, the above quantily need not be an upper
bound to the experimental dissociation energy. Thus
the correction function A’ in Fig. 6 does not violate
the variational principle if, for example, it is inter-
preted as an improvement in the relativistic correction.
In this case, the total relativistic correction to the .
ground-state energy would be 6 cm™.

It should be emphasized that the present paper does
not resolve the question of the discrepancy between®
the experimental dissociation energy of H; and E»(0) =
Dy(0). On the basis of the evidence at hand it cannot
be decided which of the values Dy(0) =36 118.0 cm™!
or Dy(14,71) =36 114.1 cm™! best represents the “the-
oretical” dissociation energy. While the former is the
quantity customarily considered, the latter has the
advantage of being determined mainly by the potential .
at large R where the relativistic and adiabatic correc-
tions, whatever their accuracy elsewhere, are approach-
ing their asymptotic values.

3 Thig ig further suggested by the results in Footnote 22 which
show that the use of an improved electronic-wavefunction basis
set_?nly affected the clamped-nuclei potential at 8.0 a.u, by '0.15
T J . D. Garcia, Phys. Rev, 147, 66 (1966). ’

#°This assumes that replacing the S$4-term electronic wave-
function with which the adiabatic and Breit-Pauli relativistic
corrections were calculated,” by the 100-term wavefunction used

in the most recent clamped-nuclei calculations,® would aot sig-
nificantly change the corrections.
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Although an accurate relativistic treatment of this
~ problem is beyond the scope of present methods, the
results presented here suggest two feasible calculations
which would shed some light on the question of the Hp
- dissociation energy. The first is a more accurate re-
calculation of the clamped-nuclei potential in the inter-
val (32 RZ 7 a.u.), where A” (see Fig. 6) is nonzero;
" the second, a more accurate treatment of the non-
adiabatic correction, such as that suggested by modern

- variational techniques.
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APPENDIX A: LOCALIZATION OF THE
“POTENTIAL DEPENDENCE” OF A
VIBRATIONAL EIGENVALUE

The high sensitivity of an eigenvalue E, to the po-
-tential near its turning points may be qualitatively
explained by considering the effect on the semiclassical
JWEKB phase integral

X Ralv)
1= 2% f [E,—V(R) *dR= (v+1)=

of a small shift in the potential (AV) over a narrow
-+ interval (AE') about a given value of E,'=[E,~ V(R) .
- To a first approximation, the change is

AI*— [i AV AE"’
* R (B | dV/dR]

" for E//| V| >1; it reaches 2 maximum of
(u/#) [ AV |'"*(AE, | dV/dR |

(for AV <0) at the classical turning point, where
"AE,’/(—AV)—0. An analogous result for E,~0 can
be evaluated for the somewhat more complicated case
AV>0. Since I,= (v+3)m, AV must induce a change
. in E, which varies as [(E,")2| dV/dR | T, but ap-
" proaches a finite limit at the turning points where
E,'=0. For the higher levels, the | dV/dR | factor shifts

this sensitivity almost exclusively to the outer turning -

point Re(v).

The potential dependence of the eigenvalues as de-
scribed above is modulated somewhat by the oscillat-
ing nature of the exact radial wavefunction. This effect
may be seen by considering the perturbation theory
expression for the eigenvalue change due to the given
- potential shift, | ¥, PAV(AE,’ | dV/dR ). The term
involving the wa.vefunctlon | ¥, |? shifts the potential
dependence inward from the turning point to the region
where it has its outermost maximum,
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These considerations were illusirated by direct com-
putations, by observing the effect on the H; vibrational
eigenvalues of localized shifts/in the relativistic, adi-
abatic KW potential® The results, given in Table
1V, indicate that error in an eigenvalue indeed reflects
error in the potential in the neighborhood of its turning -
points, especially the outer one; this is of course con-
tingent on the assumption that the maximum absolute
error in the potential is everywhere relatively small.
If this condition is not satisfied, the effect on the

"eigenvalues of inaccuracy in V(R) midway between

the turning points will no longer be distinguishable
from that of error in their immediate proximity.

APPENDIX B: COMPARIS@N OF BOUND-STATE
EIGENVALUE PROGRAMS

The Cooley-Cashion®! (C-C) method was quanti-
tatively compared to that of Harrison and Bernstein'®
(HB) and found to be faster by a factor of ~5. One
large difference between the two lies in their respec-
tive methods of estimating ﬁgz nnprovement in the
trial eigenvalue while 1teratwely converging on the
exact result. In the HB proggam the increment of im--
provement decreases by a factor of % in successive
steps, while with the predictor-corrector formula of
C-C the necessary improvement decreases by about
two orders of magnitude with each iteration. The other
major difference between these methods is that the
Runge-Kutta integration of HB requires three to four
times as much computation as the Numerov method
of C-C to span a given interval for the same increment.

Both of the above methods proceed by direct nu-
merical integration of the radial Schrédinger equation.
Zetik and Matsen,® on the other hand, expand the

Tasie IV, "Effect on H, vibrational eigenvalues of changing the
potential over a given interval.s

v A By A B C

0 . 36 118, 0.0. 0.0 0.0
2 28 029, 0.0 0.0 0.0
4 20 864. 0.0 0.0 0.2
6 14 607. 0.0 0.0 0.3
7 11 824. -0.1 0.0 0.3
8 9 280, ~0.6 0.2 0.4
9 6 987, —1.0 0.7 0.4
10 4 960. —0.1 1.7 0.3
11 3 223, -0.4 2.2 0.3
12 1 808. —0.1 2.6 0.1
13 759, —0.1 3.1 0.1
14 139. -0.1 3.6 0.0

8 Hp (em™t) are the binding energies for the unperturbed potential.
A (cm™) is the amount by which the vibrational levels are lowered. Case
A (localized perturbation): AV =55 em=1 at R=23.25 a.u.22Ra(8), 0.01
cm 1>AV =0 for RSR(DS307 am., and R2Ri(9)223.48 an,;
Case B: AV = ~4 em™ for RZ2Re(8), AV =0 for RER3(8); Case C
AV = ~4 cm~t for 0<R K09 a8 Ri(4),
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being significantly slower. Greenawalt and Dickinson®
have extended their method using Morse-potential
eigenfunctions as a basis set and achieved considerably
greater success in terms of eigenvalue accuracy, with
computation times comparable to the C-C method,
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THE UTILIZATION OF POTENTIAL CURVES



6. SPECTROSCOPIC REASSIGNMENT AND GROUND-STATE DISSOCIATION ENERGY OF I

-

Quantitative and qualitative utilizations of the method of Chapter 3
point out the need for the reassigmment discussed here. Mullikenl recently
pointed out that the 0; state to which the levels in question are reas-

signed may in fact be 3Z;(O+), rather than 3

Hgg ; however, he notesl that
there are no good grounds for deciding between these two possibilities.
Fortunately, this identification question does not affect the arguments
presented below, This work is reprinted from the Journal of Chemical

Physies, Volume 52, pp. 2678~82 (American Institute of Physics, New York,

1970) .

FOOTINOTE
1. R. S. Mulliken, "Iodine Revisited", (1971, to be published). The
author is very grateful to Professor Mulliken for making this manu-

script ayailable in advance of publication.
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Spec’tfoscopic Reassignment and Ground-State Dissociation Energy of Molecular Iodine*

. RoserT J. LEROY
Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
' (Received 3 September 1969)

Reanalyzing some early bandhead data for I,[B 0,*(*I1)], an improved value of the ground-state dis-
sociation energy is found to be De=12 440.9-4-1.1 cm™, differing significantly from the previously accepted
value of Verma, 12 452.54:1.5 cm~L. This result implies that the final state of one of the uv resonance
series reported by Verma must have a rotationless potential maximum some 13.1:2:1.4 cm™? high. It is
further shown that the original electronic assignment of this state as ground-state X 0,%(2) is implausible,
A reassignment as 0,*(*[1) is proposed, and the nature of the 0,*(*II) potential is considered.

I. INTRODUCTION

Verma observed! six series of uv resonance emission
doublets which were excited by absorption of the
1830.4-A iodine atomic line by molecules in five rota~
tional levels of the v/=0 level? of the ground electronic
state of I,. This absorption corresponded to transi-
tions into five resonant vibrational-rotational levels
of an excited O, electronic state, and the subsequent
emission from these levels yielded the observed series.
Verma concluded! that this emission always produced
‘molecules in the ground electronic state, This is un-
questionably true for those final levels to which he
assigned vibrational quantum numbers v/<84. How-
ever, the separate set of levels at the convergence
limit of the emission spectrum (Verma's v"/=98-115)
causes a strange flattening of the Birge-Sponer plot

for the ground state. Furthermore, their sharp con-
vergence-limit cutoff lies above a value of the ground-
state dissociation energy obtained from other data,
which implies that the state to which they belong
has a potential - maximum. This suggests that the
present best value of the dissociation energy,* which
is based on the position of this cutoff, is too large
by an amount equal to the height of the barrier.
The present paper presents a new value of the ground-.
state dissociation energy and proposes that the levels
in question be reassigned to the 0,%(°II) state.

IL. DISSOCIATION ENERGY OF GROUND STATE
o LIX 0,+(*2)]

Two main approaches to the determination of the
dissociation energy are considered. In the first, an
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* levels v'=48-72 of the B 0,*
- olation from these data places the B-state dissociation

6.

SPECTROSCOPIC REASSIGNM

_estimate for D, is obtained by subtracting the 2P~

e spin-orbit splitting of iodine atoms from the
convergence limit of the B 0,*(°II)-X 0,*('E) band
spectrum.3+

Brown® has reported bandhead measurements for
) state. Caveful extrap-

limit 20 044.04-1.1 cm™! above the #”=0, j”=0 level
of the ground state.” Subtracting from this the 7603.15-
et 2Py-*Pye  spin—orbit qphttmg energy® yields
Dy=12 440.9:£1.1 cn~L.1° This result corresponds to the
B=1 state having 891 vibrational levels.®

A second approach to Dy, that used by Verma,' is
bascd on the sharp low-energy cutoff of the uv reso-

" nance series at the convergence limit. The electronic

assignment of the lower state of this series is im-
material since it could only dissociate to yield two

.- ground-state %P3y atoms. Furthermore, the original
_rotational assignment of this resonance series (J,=25)

is based on the rotational constants for the emitting
levels and hence is valid independent of the electronic
assignment of the final state. Utilizing the data in
essentially the same manner as Verma! yields a D,
estimate of 12452.44-1.8 cm—L1

In general, the final electronic states of the two
transitions considered above may have repulsive po-
tential barriers as well as attractive wells. Therefore,
the two estimates of Dy are both upper bounds, being
equal to the true Dy plus the height of the appro-

- priate barrier. Since the first value obtained is 11.5-4:3
‘et smaller than the second, the state giving rise

to the latter must have a rotationless (J=0) potential

" barrier at least 11,523 cm! high. e

The moderately long-range interaction of two P

(*P3p or *Pyp) iodine atoms may be expressed as®®

C
V(R)= ——+ 2= +R§§+~-~ 1

where the first term arises from the first-order per-
turbation encrgy, and the next three terms from the
second order. It may readily be shown that Cs, Gy,
and Cyp are negative (attractive) for all molecular

" states formed from two ground-state (2P3.) atoms.4

Furthermore, theoretical values of Cs; have been cal-
culated for all the states formed on combining 2Ps;-4-

" 2Py or 2P p+2Py)s atoms. % These values show which
states are attractive and which are repulsive at the
- large distances at which the R™* term dominates the

interaction.

The theoretical Cy for the B 0,7(*II) state, whxch
dissociates to 2Psp+2Pp, is negative (attractive).!:16
Furthermore, in Ref. 8 it is shown that the potential

- at the outer turning points of the highest observed
-B-state levels is dominated by this R-® term. There-

fore, the B 0,*(*II) potential cannot have a barrier
maximum, Do=12 440.941.1 cm™ for the ground elec-
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tronic state, and the state giving rise to the uv con-
vergence-limit resonance serics must have a potential
barrier /&211.5::3 cm™?! high.

I¥I. Reassignment of the uv Resonance Series at the
Convergence Limit

A, The Need for a Reassignment

The data considered for rea,ssi;,nmt,nt are the lines
in the convergence limit portion of Verma’s resonance
serics IVb, presented in h1§ Table V.1 Ile concluded
that the lower state of this serics was the ground
clectronic state. While this’ “is unqucsttonably the case
for the other five uv resopance scries observed, it is
shown below that this assignment is quite 1mplaus:ble
for the series in question.

The theoretical C; for the ground X 0,+(*Z) state
of I is zero®™®; hence, the moderately long-range
forces are dominated by the attractive second-order
perturbation terms (Cs, Cgf: and Cy). Since the ex-
change forces are also attrgctwe (as is evidenced by -
the deep potential well), fthis state cannot have a
potential maximum. Therggore, the final state of the
uv convergence-limit res%iﬁance series cannot be the .
ground state.

A more qualitative ob)cctxon to the original assign-
ment is based on the Franck~Condon accessibility of
the final levels. Verma’s Fig. 1{g)! shows that the
emission into the 18 adjacgnt levels at the dissocia-
tion limit has roughly congtant intensity. Therefore,
it seems strange that none of the 13 levels imme-
diately below his v"/=98 wquld be sufficiently accessible
from the upper state to allow measurable emission.
The observed behavior suggests that Verma’s v"=98
is actually the lowest vibrational level of some excited
electronic state.

A final argument against the X 0,*('Z) assignment
is based on the expected behavior of a Birge-Sponer
plot for vibrational levels lying near the dissociation
limit. It has been shown that when the outer branch
of the potential in this region is a short sum of at-
tractive inverse-power terms, the plot should have
positive (upward) curvature’® For the ground state
of I, this positive curvature is observed above v/=73
and increases from there up to /=82 (the highest
well-known level below the convergence-limit reso-
nance series), where it equals 0.060 con.2 For this

_state, the theory suggests® that above the point of
* inflection at v"'=73 the curvature [d°G (v) /dv*] should

increase, perhaps pass through a slight maximum,
and asymptotically approach a constant value of
94/(Co)¥2 cm™t (where Cs is in cm™ A$).Y For a
reasonable Cs of 3.0X10%% cm—! A%, this asymptotic
curvature would be 0.054 con—L On the other hand,
the level spacings in the convergence limit resonance
series show negligible curvature (20.001 cm™; see
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TaBrLe L L[0,*(*11)] vibrational energics (in ecm™) expressed
relative to the ¢' =0, J” =0 level of the ground state.

v Fox v o v I

0 12362.4 6 12 413.6 1212 444.0
1 123725 7 12 420.1 13 12 447.2
2 12 381.9 8 12 426.0 14 12 449.7
3 12390.5 9 12 431.4 15 12 451.5
4 1239.0 10 12 436.1 16 12 452.9
5 12 406.6 11 12 440.4 17 12 453.7

Fig. 2).® This strengthens the argument that these
levels cannot belong to the ground state.
Theory shows® that vibrational levels lying near

* the dissociation limit, which yield a linear Birge-Sponer

plot, correspond to a long-range potential which is
either exponential or is dominated by an effective
inverse-power term R with # being large (#>>10).2
This high effective power is qualitatively the type of

*behavior one would expect on the inner side of a poten-
tial barrier-arising from a sum of attractive and repul-

sive inverse power terms.

B. The Reassignment

The final state to which the levels in question belong

“must have a potential barrier of height R¢11.5:3

cm™! as well as an attractive well, and must correlate
with two ground-state 2Py, atoms. Niné states in ad-
dition to the ground state correlate with two ground-
state atoms; of these, three are nondegenerate and six
are doubly @ degenerate.”® The nature of the emission
and absorption spectrum of Verma’s upper state clearly
indicates that it is 0,+.' Therefore, the AQ=0, -1
electronic selection rule immediately removes two pos-
sible assignments. In addition, the gerade-ungerade
symmetry selection rules for electric dipole?® transi-
tions (gesu, gewg, ueru)® leave the 0,7 (3I) and 1g(°II)
states as the only electronically allowed assignments.

The rotational selection rules for transitions from
~a Ot state into singly degenerate 0,% or doubly

) L T '
.. 100 106 12 i
A _ "
M~ v i
FO5 e Sso -4~
it
- 10%x B, (em™) el .
- ‘s~~‘ -]
"0.2' 1 \‘\\ o
s v IR
1 «2 ! 2 ? L 1 'f‘ P B

F16. 1. Rotational constants for final state of convergence-limit
resonance ‘series. The v” numbering corresponds to Verma’s
X 0;+(*3) assignment! and v numbering to tﬁe present O,*(311)
assignment. & are Verma's experimental values, and the arrow

.- denotes the highest observed level.'

S 0 15
H 1 i

—Q

F16. 2. Vibrational spacings of levels in convergence-limit
resonance series. v” represents the oky‘ X 0,4('8) vibrational
numbering! and v’ the proposed O,* (*IF) numbering. The curve
is generated from expression (2).

Q-degenerate 1g states allow AJ=21 and AJ=0, &1
transitions, respectively. The first gives rise to doublet
and the second to triplet structurg; While transitions

into the separate branches of the @ doublet (1g).

would correspond to AJ =1 and AJ=0, respectively,
the intensity of the Q branch (AJS'=0) is theoretically
twice that of the P or R branches, so this spectrum

would be observed as either the full triplet or as a

singlet.* Verma was able to resolve the structure of

the emission into the three lowest levels of the con- -
‘vergence-limit series, and it is clearly doublet in

nature. Therefore, the only completely allowed reas-

20000+

12000
R

£
w 0s(3m)

1‘.‘0
ty(®m) -
. D-Vem™)
4000~ RA)
0 A . \ 1
20 30 40 50 6.0

R(A)

. F16. 3. Schematic potential . curves for 0,5(*II) and some
neighboring states. The zero of energy is the v’ =0, J" =0 level
of the ground electronic state. . :
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signment of the levels in question is to the 0,%(*11)
state.

The theoretical long-range R~ term for the 0,+ (1)
state is repulsive,’>® while its R~%, R™% and R™¥
terms are attractive; thus it seems plausible that it
will have an attractive well bounded by a potential
maximum. On the other hand, the theoretical C; for
this state (2.3X10° cm™! A5)1, e is too small to yield
a 11.543 cm™! barrier at large R, either alone or when

" the competing attractive R~® term is taken into ac-

count.®
Although the origin of the potential barrier is

 -somewhat uncertain, the reassignment of the uv con-
- wvergence-limit resonance series to the 0,*(°I) state

still seems much more likely than its original assign-

* ment as X 0,7(*Z). The validity of this reassignment
-+ will now be assumed and the concomitant properties
" of the 0,+(*II) state will be considered.

IV, THE 0,+(II) STATE

This state was previously observed by Venkates-
warlu® in diffuse bands arising as emission from
discrete levels of the previously mentioned highly

. excited 0, state. Venkateswarlu concluded that its

potential was repulsive in the neighborhood of the
minimum of the ground-state potential, and that it lay

" below and to the left of the B 0,*(*I) curve.? This

same conclusion was also inferred from considerations
involving the quenching of B-state fluorescence.?

Due to this intermediate-range repulsiveness of the
0,+(*lI) curve, its potential minimum must lie at
reasonably large R, and the well is unlikely to be
very deep. The noncrossing rule which forbids it from

. crossing the ground-state X 0,%(1Z) curve also implies

that the well must be quite shallow. In view of this
and of the roughly constant intensity of the emission

. into the observed levels, it seems probable that the

lowest observed level is v/=0. If this numbering is
incorrect, it seems unlikely that it would be more than

~ one or two units too small,

The energies and assumed vibrational assignments
of the convergence limit levels are given in Table I.

. The small rotational energy contributions to the ob- -

served lines were removed after extrapolating beyond
the three experimental B, values in the manner
shown in Fig. 1. Utilizing Fig. 1 to obtain B, values,
rather than the approach of Ref. 1, places the con-

_vergence limit of this series at 12454.040.3 cm™!

(1.6 cm™! higher than the previous estimate)., This
yields 13.1:4-1.4 cm™ as a better estimate of the height
of the potential maximum. Six of the 18 observed levels
are metastable (for J'=0), being bound only by this
potential barrier,

Using the above vibrationn] assigniment, the vibra-
tionnl energiea mny be represented within a standard
error of =008 et by

E(v) =12 357.3+10522(v'+}) -—0-2866("»"%%)‘% )

i

where the encrgy zero is the v/=0, J”=0 level of
the ground state. This shows that this state has a
potential well at least 83.6-£1.1 cm™ deep (relative to
the dissociation limit, not the potential maximum).
Furthermore, the obscrved rotational splittings would
place the potential minimum at 6.0:£0.6 A. The ex-
perimental vibrational qpaﬁngs are compa,red with
those calculated from expréssmn (2) in Fig. 2. The
curve suggests that there ﬁ;ay exist one more, as yet
unobserved, quasibound sggte

The potential curve for;0,+(*[I) is shown schemat-
ically in Fig. 3, together with curves for a number
of neighboring states. The grpund-state potential up
to 11933 cm™ and the B 0,@(3H)—state potential up
to 19 705 em™ are RKR pot;?ntmls (taken from Ref.
12, and Refs. 4 and 6, re%pectlvely) The 0, (32)
curve was taken from Ref 27 and the 4 12 (%II) curve
is based on the conclusions of Brown.® At large dis-
tances the 4 1#(?[I) and X 0,+(Z) curves must cross,
since the latter dies off as R~% and the former as RS,
Furthermore, the 4 1x%(®lI) curve may also cut across
the 0,%(’I) well. The theoretical C; for 0,~(3Z) is
a third larger than that for 0,*(3II),%8 so these curves
should not cross at long range.

V. CONCLYSIONS

It has been shown that; contrary to the original
assignment, a portion of the uv resonance spectrum
of T, does not correspond to emission into the ground °
electronic state. The most probable reassignment for
the levels in question was found to be 0,*(*I). This
state appears to be an example of a van der Waals®
molecule (bound only by the moderately long-range
dispersion forces®) which has a potential ba:rier. An
improved estimate of the ground-state dissociation
energy is Dy=12 440.9+1.1 cm™.

If the present reassignment is correct, Verma s uv’”
spectrum® is the first observation of the discrete levels
of the 0,+(°lI) state. These levels clearly cannot be
observed in absorption from the ground state because
of the gebg symmetry selection rule. However, they
may be observable in near ir fluorescence (at around
1.4 p) from some of the higher levels of the B 0,* (311')
state. One restriction to this type of measurement is
that the fluorescing state cannot have a very high
rotational quantum number, as in this case the cen-
trifugal potential would bury the shallow 0,*(3I¥) well.
However, if appropriate B 0,+(°IT) levels can be ex-
cited, these 0,*(°I1) levels may be observed together

. with neighboring X 0,*('Z) levels, giving dxrect con-

firmation of the proposed reassignment,
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ABSTRACT

The energy dependence of the collisional time-delay function has
been computed for H(1S) atoms interacting via the ab initio HZ(X le)
potential. Peaks in this function determine the scattering resonance
energies Er and widths I'y, and the lifetimes for each of thg corresponding
quasibound vibrational-rotational levels. Small differences are found
between these E_ and I'y and the values obtained by a "maximum internal
amplitude” approach (intended to characterize the spectroscopically
observable predissociating levels). Approximate procedures for rapid,
accurate numerical evaluation of Er are appraised; a new outer-boundary-
condition criterion for resonances leads to the best agreement with the
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exact results. Also, a primitive WKB procedure yields I''s of usable
accuracy. For ground-state H2, HD and D2, the onset of line broadening
due to centrifugal barrier penetration is found to occur at energies
some hundreds of cm—l‘below the locus of barrier maxima. The predis-
sociation method of estimating long-range interatomic forces therefore

cannot be expected to yield wvalid results for hydridic diatomics.
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I. INTRODUCTION

The influence of long-lived quasibound states, or orbiting resonances,
on virial and transport properties of gases and on chemical reaction rates

1-10

is now widely recognized. - While any pair of colliding atoms may be

considered to be temporarily bound with some sort of characteristic life-

time,ll’lz

what is considered here is the purely quantal phenomenon of
the metastable levels arising from the existence of both a minimum and
a maximum in the effective interaction potential. These levels qualita-
tively correspond to discrete vibrational-rotational diatomic levels
which would be truly bound by the barrier if it were impenetrable.
Although orbiting (or "shape') resonances are, in principle, observable
in molecular beam scattering eXperimel:ﬂ:s5,‘13"17 the beam technology has
not quite reached the point at which the required resolution is

18

obtainable. On the other hand, under the pseudonym of "rotatiomally-

predissociating levels", spectroscopists have been studying them for more

than 40 years,lg’20

The structure seen in these experiments is a mani-
festation of the "pseudo-quantization' of the continuum wave functions

by the potential barrier. In the present paper the properties character-
izing the observables in the two types of experiments are examined and
small systematic differences are noted. The relation between the limiting
curve of dissociation (LCD), corresponding to the breaking-off of rota-

tional series due to rotational predissociation, and the locus of the

centrifugal barrier maxima (LBM) is also examined.

-1



A number of different procedures for determining the resonance
energies and widths for a given potential are examined; rapid and
accurate approximate algorithms are presented. All results are illustra-

ted with calculations for the ground (X lZ;) state of H,_ and its isotopes,

2
using the ab initio relativistic-adiabatic potential of KoZos and

21,22

Wolniewicz. The influence of small potential corrections is also

considered.



IT, RESONANCE ENERGIES AND WIDTHS VIA SCATTERING THEORY: THE TIME-DELAY

FUNCTION

A. General

The manifestation of a resonance in the energy dependence
of an atomic scattering cross section arises from a rapid growth (essen-
tially by m) of the phase shift 6J(E) for a partial wave with angular

momentum quantum number J, with increasing collision energy E.7—9’13’23’24

However, it is well’known13 that this structure can exhibit a variety of
shapes, depending on the so~called background phase shift. Thus, it

may be difficult to characterize this observable cross-section structure
by a precise resonance energy Er and width I'. On the other hand, a
resonance can always be characterized by the functionality of the appro-

priate partial-wave phase shifts. Within the Breit-Wigner parameteriza-

tion,25 in the neighborhood of an isolated resonance:

_ /2
SJ(E) = BJ(E) + arctan(Er_E) . [@D)
where BJ(E) is the background phase shift. If BJ(E) = 0, the resonance
width I' is the full width at half maximum (FWHM) of the resonance peak
in the cross section. For energies well below the maximum in the
effective potential, the energy dependence of the background phase is

negligible,7—9 and the phase shift derivative

d _ _T/2
dE [SJ(Eﬂ - (EE)Y + (T/2)> (2)
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attains its maximum (namely 2/T) at E = E.. However, for the broad
resonances lying near (above or below) the barrier maximum, BJ(E) has
distinct negative curvature7—9 which will tend to shift the maxima of"
déJ(E)/dE to energies somewhat lower than Er' On the other hand, the
division of the total phase shift into a resonant and a background
contribution (i.e., fitting to Eq. (1)), does not appear to be parti-
cularly fruitful.26 In the present work, the more conventiona18’16’30
scattering—theory definitions will be used, that is, taking the

resonance positions as the points of inflection of 6J(E) (i.e., the

maxima of dﬁJ(E)/dE ), and the widths as

T = 2/[dS (E)/E] ®

B. The Collisional Time-Delay Function

In 1960 Smith12 elaborated on the original Eisenbud—-’Wignerl1

concept by defining the collisional time-delay function

T4(E,J) [in Smith'ste4s12

notation sz(E) or Q(E,L)] in terms of an
integral of the time-independent wave function. He then related it

to the phase shift derivatives by proving the identity

T,(E,3) = 2 4 48 (E)

- . (%)
dE

Scattering~theory resonance energies for the J-th partial wave
therefore correspond to the energies at which maxima occur in Td(E,J),

while the widths [from Eq. (3)] are

by



=4 A/l ED] (5)

It should be noted that Egs. (4~5) are identities; also [Td(E,J)]maX
is not the predissociation lifetime T of the quasibound state. The

latter may be shownsl to be

T = —41- [T, D] = AT

1 formal

The method used here for computing Td(E,J) from Smith's
expression is described in Appendix A.

The nature of the time-delay function is illustrated in Figs. 1
and 2 for several partial waves for H+ H and D + D collisions governed
by the (X lZ;) ground-state molecular potential. Contrary to the
suggestion of Fig. 5 in Ref. (4), Td(E,J) shows no structure at energies
significantly above the potential maximum (this was found to be the case
for H+H, H+D and D+ D, for all J). As is inferred from the
phase shift curves in Refs. (7-9), at sufficiently high energies
Td(E,J) eventually becomes negative as the influence of the repulsive
core of the potential becomes dominant; it then passes through a very
broad minimum and asymptotically approaches zero from below. This
behavior is seen in Fig.3 (solid curves) for several low partial
waves of H + H. There is apparently no localized structure in Td(E,J)
associated with the barrier maximum; the only noticeable effect is the

change in the sign of the slope of the non-resonant background time-

delay (see Figs. 1 and 2). However, for low J this occurs at energies

-5-
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below the barrier maximum (see the J = 4 curve in Fig. 3), and in any

case it is usually obscured by the structure due to the highest resonance.
It is desirable to examine tﬁe appropriateness of the Breit-Wigner

parametrization, implicit to Egqs. (1)-(3) and (5), for broad resonances

near the barrier maximum where the curvature of the background phase

is not negligible.32 It implies that the full width at

half maximum (FWHM) of a resonance peak in Td(E,J) is equal to the

T defined by Eq. (5). This question is examined in Table I for broad

H + H resonances lying close to the barrier maxima for the indicated

J's; the penultimate column tabulates the FWHM of the Td(E,J) peaks,

while the preceding one lists the widths given by Eq. (5). fThe

agreement is good, especially for the narrower resonances, which indi-

cétes that the simple parametrization of Eq. (1), with BJ(E) =0,

is at least adequate for resonances narrower than ca. 100 en L,

ITL. SPECTROSCOPIC RESONANCE POSITIONS AND WIDTHS: THE INTERNAL-

AMPLITUDE FUNCTION

A. Qualitative Discussion

A quasibound level may be observed spectroscopically as a peak
in the continuum absorption or emission for transitions between it
and a discrete bound state. The transition probability varies as

® 2
b (v,E) S YR M R) Yy (R) R| (6)
0 -~
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Here Vv is the frequency of the emitted/absorbed light, Wd(R) the
radial wave function of the discrete state, Me(R) the electronic
transition moment function, and WE,J(R) the continuum quasibound-level
wave function with total orbital angular momentum quantum number J,

at an energy E above the diatomic dissociation limit. The function

p (V,E) factors into the density of continuum levels at energy E,
times unity for absorption or v3 for emission. For hv >> I' (the

usual situation) this frequency factor does not affect the intensity
distribution near a resonance, and hence can be ignored. Also, the
asymptotic wave function normalization will be chosen such that the

33

density of states is constant,”~ completely removing the p (V,E) term

from the problem. This normalization is
, 35
WE’J(R) ~ Ak {sin(kR + GJ(E) - JTF/2)} ’ N

where A 1is a constant and k = VZUE/hz . Observable spectroscopic

ctructure arises because the amplitude of WE J(R.) behind (at smaller
9

R than) the potential barrier, peaks sharply in the neighborhood of

a resonance. At the same time, despite the drastic change in the
internal amplitude, the radial positions of the wave function nodes
lying behind the barrier change only very slightly across the width
of the resonance.34 This suggests that the continuum wave function
behin&/the barrier and near a resonance may be factored into a nearly

energy-independent radial function, and an energy-dependent amplitude:
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v B = IAEDx o ® (8)

Resonance structure in the absorption/emission intensity thus depends
only on IA(E,J); this "internal amplitude" function is examined below

and its behavior compared to that of Td(E,J).

B. Semiclassical Treatment of Orbiting Resonances

Before proceeding with the fully quantal computational investiga-
tion, it is instructive to examine the implications of a semiclassical
analysis. The best semiclassical treatments of orbiting resonances
start by approximating the potential barrier by a simple model function
(e.g., an inverted parabola) for which the exact wave functions are

35-37

known. They next define the semiclassical wave function over the

potential well behind the barrier:
R

_{1a@E,n)? o .
¥p 3 (R) _(”15_&(_&.)_).) cos j Pyy) dy -7 [ . (9
J B} (E)
where .
Py =12 |5 -vw (3 +°
J - ,1:12 - - R.2 )

and Rl(E) is the innermost classical turning point at the enersgy E.
Then the exact solutions for the model barrier are used to connect

Eq. '(9) to the solution outside the barrier at asymptotically large R:

8~
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: 4
‘PE,J(R) ~ (%—‘?—-%-i—“l—)‘) {E(E) sin (P (®)R-[J+5] :g-)+ g(E) cos (P 1 (=) R~[J+s] 127.)} R

(10)

where £(E) and g(E) are complicated functions of the energy and the
properties of the model barrier. Casting Eq. (10) into the semiclassical

form equivalent to Eq. (7) yields

IA(E,J) = [£2(B) + g2(B)] > , (11)

and

6J(E) = arctan [g(E)/f(E)] (12)

Substituting Eq. (12) into Eq. (4) yields

T (E,9) = 2 [£(E) g'(B) - g(B) £'(®)] [£2®) + @17, (13)

where primes denote differentiation with respect to E. Comparison of
Egs. (11) and (13) suggests the origin of the coincidence previously
noticed between the scattering-theory resonance positions and the
structure in the internal amplitude function (and thus in the optical

7,27,30

transition probability). However, the residual energy dependence

of the middle term in Eq. (13) will cause a "skewing" of the resonance
peaks of Td(E,J) relative to those of the TA(E,J) function, which may
be sufficient to cause a significant difference between their respective

maxima. This question is examined below using exact numerically calcu-

lated wave functions for ground-state H2.
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C. Resonance Behavior of the Internal=Amplitude Function

Buckingham and Fox7 noted that the internal amplitude passes
through a2 maximum at resonance, and both Allison27 and Jackson and
Wyatt30 suggested quantitative criteria for locating resonances, based
on this effect. In Ref. (27) the resonance energy was taken as that
corresponding to the minimum in the asymptotic nérmalization of the
wave functions obtained on numerically integrating from "constant
initial conditions" at the inner boundary (where R - 0). Because of
the uncertainty inherent in the definition of this constant initial
condition, in Ref. (30) the resonance energy was located at the maxi-
mum in the "ratio of the maximum amplitude inside the centrifugal
barrier over the amplitude at large internuclear distances”. However,

1
—%

both these approaches neglect the additional E * energy dependence of
the asymptotic mnormalization (see Eq. (7)), which can be fairly
important for broad low-lying resonances.38

In the present work, exact numerical continuum wave functions
were calculated and given the asymptotic normalization appropriate
to a constant density of states (see Eq. (7)). Then quadratures were
carried out from the origin to R(n)(E), the nth node of WE’J(R) lying

inside the potential barrier, and a conveniently scaled amplitude

function defined as
™ (z,5) = S e s ® 17 @/®@ - @1, e

0
-10-
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where (as in Eq. (9)) Rl(E) is the innermost classical turning point.
In Figs. 3 and 4 the internal amplitude functions (right ordinate
scale) defined by Eq. (14) for n = 1 (upper dashed curves) and n = 4
(lower dashed curves) are compared to the Td(E,J) functions (solid
curves, left ordinate scale) for several J values for ground-state H2°
The IA(E,J) values in Figs. 3 and 4 have units [cm] and correspond
to the conmstant A in Eq. (7) being A= (4 u ¢ adfﬁ)%, where a is the
Bohr radius. While the absolute value of IA(n)(E,J) depends on mn,
the functional dependence on E is virtually independent of =n for
R(n)(E) < RmaX(J), where Rmax(J) is the position of the potential
barrier maximum.

For the broad H2 resonances closest to the barrier maxima the
resonance positions defined by the maxima in Td(E,J) and TA(E,J) are
compared in Table I (columns 3 and 4). The FWHM of the IA(E,J) peaks

(last column) are also compared there to FWHM(T,), and to the widths

p
predicted by Eq. (5). It is evident that the IA(max) criterion always
places the resonances at slightly higher energies than does Td(max),
the differences being about 5% of the widths F.40 Also, though the
TIA(E,J) peaks are skewed to higher energy relative to the more
symmetrical Td(E,J) maxima, the FWHM of the two functions are still

in good accord with each other, and with the widths yielded by Eq. (5).
Only for the very broad resonances lying well above the barrier or at

low J and E does the relative magnitude of the non-resonance background

significantly alter this conclusion. Examples of this are the v = 14,

11—
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J = 6 and 7 resonances in Fig. 3, and the v = 7, J = 25 resonances in
Fig. 4, However, thése cases are relatively unimportant, as the
structure is too diffuse to be spectroscopically observable and the
collision delay time too small to be of physical interest.

The fact that the internalsamplitude criterion places resonances
at energies higher than those of the maxima in Td(E,J) was previously

noted in Ref. (27) for one particular quasibound level of H, (v = 14,

2
J = 5). It is seen here that this is probably true for all resonances,
and that the magnitude of the displacement is proportional to the
resonance width. Thus, spectroscopic measurements should place

quasibound levels at slightly higher energies than yielded by the time-

delay (or phase shift) analysis. However, due to the complicating effect

of the background phase13 the differences would probably be unobservable

in a comparison with possible molecular beam cross-—section measure-—
ments .

An effect which may distort the spectroscopic implications of
the TA(E,J) analysis arises from the fact that the separation of
variables in Eq. (8) is only approximate, particularly for broad low-
energy resonances. This means that the residual dependence on E of
the nodal structure of the continuum wave function (i.e., of ¢J(R) in
Eq. (8)) will tend to skew the transition probability of expression
(6) relative to the IA(E,J) peak. Of course the direction and magni-
tude will depend on the particular discrete state (Wd(R) in expression

(6)) connected to the resonance by the transition. However, if this

-12-
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skewing is steep enough there may be a significant shift of the
transition probability peak away from IA(max). Furthermore, if
this displacement is a significant fraction of I'y it could also
result in a considerable narrowing of the spectral line relative

to the FWHM(IA).41

IV. ACCURACY OF PRESENT RESONANCE ENERGIES AND WIDTHS FOR GROUND-

STATE MOLECULAR HYDROGEN

The Kotos-Wolniewicz (KW) potent:i.alZl’22

for ground-state H2
was the first ab initio potential to achieve ''spectroscopic
accuracy', yielding a better dissociation energy than the experi-

42,43 However, analysis of the

mental value then available.
vibrational level spectrum indicated that even after non-adiabatic
effects were taken into account, this potential still required

b4

small correetions at moderately long range. One indication
of this is the fact that the v = 14 , J = 4 H2 resonance

predicted from the KW potential lies 3.8 cm—l above the

-13-
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dissociation limit, while experiment shows it to be bound by

0.8 (+ 0.5) cm_l.45 This particular error is significant,since it
implies that this quasibound level should not have been utilized in
the calculation of the termolecular recombination rate for atomic
hydrogen (see Ref. (2)).46 Apart from this, errors introduced by
ignoring non-adiabatic effects and omitting the empirical potential
im.provemeni:44 will be small. Correcting for them would shift the

predicted resonances some 0 - 6 c:m_l to lower energy, while not signi-

ficantly affecting the widths, as is shown below.

The influence of the empirical potential correction44 A" on the
resonances considered in Table I is shown in Table II; clearly the
effects on both the energies and widths is quite small. The continued
neglect of nonadiabatic effects is quite unimportant for these cases,
since their magnitude depends on the expectation wvalue of the kinetic

energy44’47

which becomes very small for levels near the top of the
centrifugal barrier.48 Since the correction A" was defined so as to
bring the experimental and caléulated J = 0 vibrational energies
(including the nonadiabatic correction47) into agreement,44 the results
in Table II are essentially correct and unlikely to be significantly
altered by further improvements in the potential. Indeed, when the
nonadiabatic correction (following Ref. (44)) was added in, the v = 14,
J = 4 level in Table II becomes barely bound with an eigenvalue of

- 0.08 (+ 0.15) cm_l, almost (within mutual uncertainties) the

experimental value of - 0,8 (+0.5) cmula However, the Ref. (44)

14—
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estimates of the nonadiabatic corrections are believed to be slightly
large, so that further small corrections to the potential may be
needed (i.e., increasing A" slightly, particularly at long range).

In any case, none of the resonance energies of Table II is likely to
change by more than 1.5 - 2.0 L,

A further demonstration of the insensitivity of the resonance
widths to moderate changes in the potential will be discussed in
Section VI.

A compilation of the energies of all quasibound levels of ground-
with widths of less than 100 cm *, and the widths

state H,, HD, and D

2° 2

for those which are broader than 0.05 cm T is available in Ref. (48).

The locus of the céntrifugal barrier maximum as a function of J is also

given there, Annotated FORTRAN listings of the computer programs used

in the present caleculations are also available.49

V. ROTATIONAL PREDISSOCIATION BROADENING AND THE LIMITING CURVE OF

DISSOCIATION (LCD)

The onset of line broadening, followed by the "breaking-off" of
a rotational series is often related to the height of the maximum in
the effective potential U(R) arising from the centrifugal potential

for a given J value.lg’20

The locus of the energy of this onset as a
function of J(J+l) is known as the limiting curve of dissociation
(LCD), and its extrapolation to zero J has long been used as a means

of obtaining diatomic dissociation limitsa19 This relation has been

15—
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further exploited by Bernsteinl4 who related the shape of the LCD to

the nature of the long~range interatomic potential tail. His treatment
involved two assumptions: (i) the long-range potential may be accurately
approximated by a single inverse-~power term for R values near the cen-
trifugal barrier maxima for the J wvalues considered, and (ii) the
experimental LCD is identical to the locus of (centrifugal) barrier
maxima (hereafter designated LBM). The second of these assumptions

is critically examined below.

In Fig. 5 (lower half) is plotted the LBM for the ground (X l;;)
states of H23 HD and D2; the three isotopes are combined by use of the
indicated reduced abscissa scale. The dashed curves represent the
predicted experimental LCD's (i.e., the onset of observable predis-
sociation broadening), defined as the loci of the energies of quasibound

levels having widths

0.05 < T < 0.25 cm‘l.

Also shown are the "error terms" AE, i.e., the differences between the
LBM and the predicted LCD curves, which range from 10 to 40% of the LBM
energy with the greatest relative error at small J. Thus, it is clear
that the predissociation analysis of Ref. (14) should not be applied

to diatomic hydrides or deuterides, and should probably be used

cauvtiously for other light diatomics,50
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VI. RAPID AND ACCURATE DETERMINATION OF RESONANCE ENERGIES, AND THE

WKB APPROXIMATION FOR THEIR WIDTHS

A. Determination of Resonance Energies

Most of the procedures suggested for locating quasibound states
~either utilize an asymptotic property of the wave function, or treat
the resonances as bound levels with a discrete outer boundary condi-
tion. The first type includes the approaches discussed in the
preceding sections, defining the resonance energy as a maximum of the
Td(E,J) or TA(E,J) function. These require considerable computational
effort; the wave function must be numerically integrated out to the
asymptotic region where the non-centrifugal part of the potential is
negligible, and there is no efficient algoriéhm for converging on a
resonance.53 In addition, these methods do not readily yield reasonable
estimatéé aﬁ the widths of Very sharp resonances unless the entire
caleculation is performed in multiple precision arithmetic capable of
resolving T.

In the boundary condition (BC) methoévone.tries to select a
discrete criterion for the wave function at some arbitrary outer
boundary (such as the barrier maximum) which corresponds to the maximum
of Td(E,J) or IA(E,J). Combining this with the usual inner boundary
condition yields a simple one-dimensional eigenvalue problem with no

necessity of numerically integrating past the chosen outer boundary.

-17-



7. 112

This also allows utilization of the eigenvalue predictor-corrector
formula which automatically converges very rapidly to the eigenvalue
nearest to the arbitrary initial trial energye54

Other approximate methods of locating resonances f£all into neither
of the categories described above, in particular, the method of Refa((28)
and the bound~state approach of Ref. (16). While these approaches
avoid the necessity of integrating beyond the potential barrier, they
do not include a means of rapidly converging on the resonance energy, as
is introduced by the use of a discrete outer boundary condition?
Hence, they will not be considered further.

Several different outer BC's were tested here. These required,
respectively, that the wave function: (i) have zero slope at the

barrier maximum, R CJ)a55’56
max

(ii) have zero slope at the outermost
classical turning point, R3(E),56 (iii) behave as an Airy function of
the second kind at RS(E),57 (iv) behave as the first-order WKB
solution with negative exponent (exponentially increasing inwards)

at RmaX(J),S9 (v) have a node at R3(E), and (vi) have a node at
maX(J). In Table III the energies of the broad quasibound levels of
H2 calculated using the first five of these criteria are compared to
those defined by the maxima in TA(E,J). Considering these shifts in
units of the respective widths ' (from Table I) shows that: BC(i)

yields eigenvalues too low by some 2507 of F;60

60

BC(ii) results are too
low by ca. 75% of T';~ BC(iii) is the best criterion considered,
yielding eigenvalues in error by only ca. + 4%Z of I'; BC(iv) results

are either too high or too low, with average errors of ca. + 25%

-18-
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of T: BC(v) predicts resonance positions which are too high by ca.
100% of Fg61 In addition, the faet that wave function nodes move

inward with increasing energy discredits BC(vi), since necessarily

BC(1) < BC(1i) < {iﬁ%ié;’ < BC(v) < BC(dH
where the equalities hold only at the energies of the barrier maxima
where. Rmax(J) = RZ(E) = R3<E>° The magnitudes of the shifts
described above should be considered in light of the fact that the
average difference between Td(max) and IA(max) is 5% of F.6l

Since the Airy=function boundary condition [BC(iii)] yields the
best results, the resdnance positions it predicts are listed in Table I
(column 5). Of the other criteria, BC(i) and (ii) may also be of
some practical use for detecting resonances which lie slightly above
the barrier maximum, where they cannot be located by BC(iii).62
However, in most cases the Airy-function approach, in addition to being
most accurate, successfully detects all important resonances. For Hz,
except for (v,J) = (9,19), (12,12), (13,9) and (14,5) [see Tables I
and III], the only resonances undetectable by thié approach lay signi-

ficantly above the centrifugal barrier, with widths 2 100 cm_1,

B. WKB APPROXIMATION FOR RESONANCE WIDTHS

The predissociation lifetime T of a quasibound state may be
obtained semiclassically24 as the product of w, the probability per

collision of tunneling through the barrier, times tvib’ the period of

-19-
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oscillation in the potential well. The latter is simply the quadra-

ture over the potential minimum
R, (E)

t . = —‘g- S [E - UER)]

vib

1
%

dR (15)

R, (E)

where Rl(E) and Rz(E) are the first two classical turning points,

at which the effective potential

U(R)

1

2
vy + SEED AT
2 2u
R
Similarly, the former involves a quadrature "through the barrier",

yielding

R, (E)
T

w=exp - B UE - 27wy, (16)
R, (E)

where R3(E) is the third (outermost) classical turning point. Thus,

by the uncertainty principle, the level width is

I'(WkB) = 4/t = A/(w tvib> . (17)

Resonance widths for H2 calculated from Eqs. (15-17) at the energies
corresponding to the Airy%function boundary condition are presented

in column 6 ("WKB") of Table I; they are within ca. 127 of

the more accurate estimates of columns 7-9. It should be noted that

Egs. (15-17) provide estimates of widths (or quasibound-level predissoci-
ation lifetimes) for resonances which are far too narrow for convenient

evaluation by the methods of sections IT and III.

~20~
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It is interesting to consider the dependence of these WKB widths on

the estimate of the resonance energy. This is conveniently done by
evaluating Eqs. (15-17) at the resonance energies predicted by five

of the boundary conditions discussed above. The results are presented
in the second half of Table III. The energy dependence of the widths
is small enough that no significant errors are introduced into the WKB
widths in Table I by the displacements of the Airwaunc;ion eigenvalues
from the exact resonance energies. This small energy dependence

also confirms the conclusion (see Sectioq IV) that any future corrections
required by the ab initio ground=state H2 potential would not signi-
ficantly affect the resonance widths given in Table II.

An entirely different procedure (the '"stabilization method") for
determining resonance energies and widths has been described by Hazi |
and Taylor,63 However, it would appear: to be most useful as generalized
‘to the multi—channel case (compouhd—staté resonances);64 it séems
unnegessarily complicated for the practical description of single-

channel (shape) resonances.
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APPENDIX A: Calculation of Td(E,J) and Verification of Eq. (&)

Smith's12 collision delay time Td(E,J) (his Q(E) or QQQ(E))FiS
the difference between the time two particles spend together during
an actual collision with energy E, and the transit time for the same
initial conditiongin the absence of an interaction potential. Here
the orbital angular momentum quantum number J (Smith's %) merely
specifies the magnitude of the centrifugal contribution to the

effective potential. Smith showed that this "delay time'" was

T4(E,J) = S WY - vy ar + (;ﬁ—uk-z) {sin(ZGJ(E) - Jw)},,(Al)

where the exact radial wave function is asymptotically normalized as
e J
= [2H AL
Yy (hk) {sin (R + 8 (B) - = 3}, (A2)

with notation as in Sections II and III. For.most cases of interest
(i.e., those considered here) the non—centrifﬁgal part of the inter-
action potential is effectively negligible at some finite internuclear
distance R+. Thus, for all R > R+ the exact solution is indistinguishable

from

X

Y e (%%} kR -{cos[éJ(E)] jJ(kR) - sin[éJ(E)] yJ(kR)} . (A3)

where jj(z) and yJ(z) are the spherical Bessel functions of the first
and second kindg65 In the present approach, as in the standard phase
shift calculation, exact numerical integration of the radial wave

equation is performed out to the smallest such R+, There the solution
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is decomposed into the form of Eq. (A3) to yield SJ(E), and given

the desired asymptotic normalization. Then, defining Z+ S kR+,

Eq. (Al) becomes

R
+
T, (E,3) = j‘ v ¥ ar - gy 12z, - sin(2z, + 26,(8) - Im)] + A(Z;’” °
0
(A4)

Here the integral may be readily computed from the exact numerical

wave function, and the residual asymptotic contribution

Hi

%
Mz, ,T) § @'y - vy d (5)
Z+

where z = kR, and ¥ and ¥ are given by Egs. (A3) and (A2) respectively,
may be computed essentially analytically.

For J =0, A(Z+,J) is identically zero, while its evaluation
for J > 0 is described below. The magnitude of this term clearly
depends on the criterion used for selecting Z+ (i.e., for selecting
R+). In the present calculation this was done by constraining Z+ > J
and requiring differences of 5.10_4 fadians between the values of
BJ(E) evaluated at three consecutive wave function'hodése23b The rela-
tive contribution of A(Z+,J) to the sum in Eq. (A4) varied frcmfbeing a
negligible fraction (at a very sharp resonance), to becoming the

dominant term both at broad resonances and away from resonance.

—-23-
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Using the Rayleigh expansion for the Bessel functions in Eq. (A3)65

one obtains:

J
. _ J - m  -m X AT
z JJ(Z) = (-1) E: NJ z sin [z + (J-m) 2}
m=0 (A6)
J+1 S T
2y (2) = (-1) Y W™ cos [z+ (Jm) T
m=0
where for the coefficients N? :
0 9
NJ = 1 for all J
N? =0 for allm > J } (A7)
mo_ _ _ -1
N} =N, - QGt-DN[] forallm<Jg .

A simple corollary to Eqs. (A7) is

J_oJ-1 T
N} == N~ =- (2-DN; ]

Substituting Eqs. (A6) into Eq. (A3), and the latter and Eq. (A2) into
qu,(AS) yields:

4y L m m m 2m-1
A(Z,,3) = (’F{E) HEL {AJ S$(2m-1) - By C(2m) + C;/(Z) } , (A8)

where A? s B? and C? are simple functions of the known N? coefficients:

Y
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min{m~1,J-m]

J~ ~n-1

g - -
n=20

3 (Nm) 2 min[m,J-m] b _

BI; = (-1 {\g + Z NJn N’;n (A9)
2 n=1
o)
m 1 J min[m,J-n] n . tn . m-n
¢ = GmDn |2 Y ), -1 N7 Ny .
n=1

The remaining factors in Eq. (A8) are the quadratures

S sin(2z + 2673)

S(2m~1) = T dz
2 Z
+
cm-2) = g cos(2z + 267) dz ,
zZm—Z
2y
which are related through the recursion relations
'\
S (2m-1) °°S<2242r +126J) - @ -3 clzm)
2(Z+) = L(AL0)
Clem-2) = S1RCZt ¥ 200 4 - 1) sem-1) |

2m~2 -
2(Z+)

These relations are used to generate the terms in the sum in Eq. (A8)
as m decreases from J to 1;66 thus one needs C(2J) as a starting
value., Making use of the fact that Z+ > J, C(2J) may be expanded by

repeated applications of Eqs. (Al0)., After n iterations it becomes

-25-
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-1 (29-1)
1 . n 2 J+k/2
c(2J) = —— - sin (22, + 28.) i1 + (-1) (
2J + J i l 7
22 1;1 k=0 ¥

AR nol o 2 <J+k/2>
+ (z+) cosczz+ + 26J) 1+ Z:' (-1) ‘fn‘ z, +R(n) , (All)
2 =1 k=1

where
2n -~ 1
R(n) = (-7 ©(2J + 2n) ‘[T 7+ k/2) . (A12)
k=20
It is readily seen that
2n-2
|R(n)| < —1——-2-5 (“sz:-y‘z—) , (A13)
2(Z+) +

k=0

and hence the series in Eq. (All) converges for n < N where noox
is the largest integer < (Z+ + 1 -J) . If the bound given by

Eq. (Al3) is not negligible for n = s the remainder R(nmax) may
be evaluated using a numerical quadrature for C(2J + anax)- Because
of the large power of z in the denominator, this requires very few

mesh points.

The evaluation of A(Z+,J) via Eqs. (A7) - (Al3) was tested for
a number of cases by comparing the results to a numerical quadrature
of Eq. (A5) with expressions (A2) and (A3) substituted for ¥ and Y .
For 1 < J < 30 and Z+ = 2J the numerical quadratures (which required
orders of magnitude more computation time) were in excellent agreement

)067

with the "analytic" results from Eqs. (A7) - (Al3 In the present
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calculations on ground-state HZ’ HD, and D2 the total time delay
computation, including the calculation of the phase shift, took om
the average less than 0;2 sec for a given J and E,68 compared to
0.15 sec for the évaluation of the phase shift alone.17

For the time delay defined by Eq. (Al), Smith12 proved the
identity of Eq. (4); this is used here as a check on the present
method of calculating Td{E,J), The potential used was that employed
by Waech and Bernstein16 in their phase shift calculations for H2°
For the resonance energies listed in their Table V,16 whose widths
range from 3 to 150 cm~l, the present approach (i.e., use of Eqs. (A4)
and:(A7—A13)) yielded widths differing with theirs on the average
by j;S%.69 These differences reflect both the lower
accuracy of the computations of Ref. (16) and error introduced
through the finite difference approximatioﬁ they used for the deriva-

tive in Eqs. (4). This latter effect is a difficulty inherent in any

calculation of delay times using Eq. (4). This problem is illustrated

here for H2 for J

of the v =13, J = 8 resonance (for which E_ = 89.93 —

8 at E = 89.95 cm_l9 which is very near the center

and T = 1.90 em 0). Using the first difference formula (energies in a1

- _ 1 A8
Ty(89.95.8) = g0 (AL4)

1

with the differences centered at 89.95 cm —, time delays for different

AE values are given in Table IV; the "correct" value, obtained from

Eq. (A4), is 1.119 x 107 sec. The uncertainties in Table IV cor-
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respond to estimated absolute phase shift accuracies of + 0.0005 radians.
As expected, use of a small AE mesh yields a loss of precision in the
phase shift differences, while for a large mesh the first difference
approximation for the derivative is no longer accurate.

Annotated FORTRAN listings of the computer program used in the present

dJ(E) and Td(E,J) calculations are available in Ref. (49).

-8~
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7. 124
TABLE II. Best estimates of resonance energies and widths for ground-
state H,, calculated from the "corrected" potential, i.e.,
including the empirical correction®4 A" (¢f. Table I which
corresponds to the ab initio potential®™ alone).
Er[cm_l] ; F[cm—l]
/ c
v J T, (max)® 1A (max)® E \ﬁ%g%)
!
0 38 7509.2 7513.5 80.9
0 37 6513.0 6513.0 5.97
1 35 5549.1 5549.2 14.4
2 33 4687.0 4687.3 ; 20.8
3 31 3923.0 3923.5 ; 24,1
4 29 3252.3 3253.0 i 25.2
5 27 2670.2 2671.0 25.7
6 25 2172.0 2172.8 27.1
7 23 1751.8 1753.0 31.0
8 21 1402.9 1405.4 40.0
9 19 1117.0 1123.1 58.3
9 18 722 .4 722.4 0.51
10 16 582.0 582.0 2.84
11 14 475.7 476 .5 17.3
11 13 195.5 195.5 0.004
12 12 380.3 393.1 71.3
12 11 211.4 211.4 2.32
13 9 191.4 200.8 52.3
13 8 86.3 86.3 1.48
14 6 8l.5 114.8 104,
14 5 b4, 1 46.8 17.4 d
14 4 1.0 1.0 0.0005

a)
b)
c)
d)

"Scattering theory' resonance energy.

"Spectroscopic" quasibound level energy.

This is identically 2/(d6J/dE)max°

This resonance was too ;sharp to resolve Id(max) conveniently, so

this width was obtained using the semiclassical method discussed in

Section VI.

show this level to be truly bound@41

-30-
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places the IA(E,J) maximum for the 20 cm_“l broad (14,5) resonance

at E = 50.8 cm_l, compared to the present 49.2 cm—1 (see Table I).
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This was verified for all partial waves (J values) for ground-state

HZ’ where resonances ocecur with 0-14 nodes inside the barrier maximum.

In any case where the peak positions did vary with n, the shifts
were always much smaller than the difference between the positions
of the respective IA(E,J) and Td(E,J) maxima, which difference

was itself much smaller than I' (e.g., see the v = 7 resonance for

J = 25 in Fig. 4). Occasionally the residual background in
IAcn)(E,J) also shows an extremely broad but insignificant maximum
at an energy far above the barrier. An example of this is found in
the IA(n)(E,A) curves at E = 400-500 cm—l (depending on n, cf.
Fig. 3). However, this type of structure cannot be associated with
a resonance since there is no corresponding structure in Td(E,J),
and because the node count behind the potential barrier is more than
one greater than its value at the nearest lower-energy resonance
for the given J.

This was the case for all the resonances of ground-state HZ’ HD

and Dz. One might speculate that the energy of the internal
amplitude maximum i; the Breit~Wigner resonance position, Er in
Eq. (1), since its shift relative to Td(max) is in the correct

direction, and it depends only on the wave funection in the region

(3.

<R
—  max
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This may explain the discrepancy previously pointed out
between G. Herzberg and L. L. Howe's (Can. J. Phys. 37, 636
(1959)) two determinations of the energy of the v = 14,

J = 5 quasibound level of H2 , and their disagreement with
the calculated peak position.27 The two experimental values
were fespectively 0.5 T below and 0.9 I' above the calculated
value, where I' = 20 c:mwl .27 If a gskewing of the IA(E,5) peak
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sharp', while the calculated (see Table I here, and Refs.(16)

and (27)) width is ca. 20 cmwl .
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One needs only initial values of this function very near the turning -
point (where its argument is quite small), and they are readily
obtained by summing the first few terms in the ascending powér
series expansion for Bi (Eq. (10.4.3) in Ref. (58)). This criterion

was chosen because it gives the maximum possible amplitude growth
across a right triangular barrier.
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Within the first-order WKB approximation this should correspond
exactly to BC(iii).

This relative ordering of the results for BC(i) and (ii) was found
in Ref. (30) for the two broad resonances considered there; however
it is interesting here to note its generality and the relation
between the shift and the resomance width.

The analyses of these relative shifts omitted the sharp resonances
since the effects there are abscured by the limited precision of
the calculation.

See, e.g., (v,J) = (9,19) and (14,5) in Tables I and III.

A. U. Hazi and H. S. Taylor, Phys. Rev. Al, 1109 (1970).

a) W. H. Miller, Chem. Phys. Lett. 4, 627 (1970); b) M. F. Fels
and A. U. Hazi, "Calculation of Energies and Widths of Compound-
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The alternate approach would invert Egqs. (AlQ) and evaluate the sum
in Eq. (A8) starting at m = 1. However, since Z+ > J (and often
Z+ >> J), this causes a seribus loss of precision when using these
recursion relations, yielding completely spurious values of C(2m)

and S(2m-1) for m as low as 5.
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The residual differences ranged from < 0.004% of A(Z+,J) for

J <10, to 1.2% for J = 30, probably reflecting accumulated errors
in the numerical quadratures.

This program49 was coded in Fortran V and run on a Univac 1108
computer.

The only serious exception is the v = 10, J = 17 resonance, for
which an apparently erroneous width of 376 cm—l was reported
previouslyl6 (cf. Eq. (5) yielded 92.9 cm_l). The worst disagree-
ment for all the other widths reported was 127, and the differences

were usually within the uncertainties reported in Ref. (16).
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FIGURE LEGENDS

Fig. 1 Collisional time delays Td(E,J) [sec] for atomic H + H collisions
governed by the singlet ground-state H, potential curve. The ver-
ﬁical dashed lines denote the energies of the barrier maxima for
the different J. The v labeling of the peaks indicates the number
of nodes in fhe radial wave function for internuclear separations
smaller than that corresponding to the potentigl maximum,

Fig. 2 Collisional time delays Td(E,J) [sec] for D + D collisipns; as
in Fig. 1.

Fig. 3 Comparison of T,(E,J) functions (solid curves, left ordinate
scale) with the IA(n>(E,J) functions (right ordinate scale) for
n = 1 (upper dashed curves) and n = 4 (lower dashed curves), for
ﬁ + H collisions. The vertical arrows indicéte the precise loca-
tion of the respective maxima; as in Fig. 1.

Fig. 4 Comparison of 7,(E,J) and IA(E,J) functions for H + H collisions;
as in Fig. 3.

Fig. 5 Lower: comparison of the LBM (solid curve! with this abscissa
it is the same for the different isotopes) with the predicted PCD'S
(dashed curves) for ground-state HZ’ HD and D2~ ‘Upper: the'érror

term AE = [E(LBM,J) - E(LCD,J)] wvs J(J+1)
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8. EIGENVALUES AND CERTAIN EXPECTATION VALUES FOR ALL BOUND AND QUASI-

BOUND LEVELS OF GROUND-STATE (X “I'") H,, HD AND, D,
5 oo

This chapter is reprinted from University of Wisconsin Theoretical

Chemistry  Institute Report WIS-TCI-387 (1971).
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EIGENVALUES AND CERTAIN EXPECTATION VALUES FOR ALL BOUND AND

%
QUASIBOUND LEVELS OF GROUND~STATE (X 122) H2, HD and D2

Robert J. Le RoyT

Theoretical Chemistry Institute and Department of Chemistry
University of Wisconsin, Madison, Wisconsin 53706

ABSTRACT

2 2

The eigenvalues, and the expectation values of R, R“, R ~ and

kinetic energy have been calculated for all vibrational-rotational
levels of ground-state (X lZg) H2, HD and D2’ from the relativistic,

adiabatic potential of Kolos and Wolniewicz. The widths I' are also

given for all quasibound levels for which 0.05 < I' < 100 cm_l.

- e ew me mem mee e e e
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I. INTRODUCTION

A detailed knowledge of the properties of the vibrational-rotational
level spectra of diatomic molecules is required for a proper under-
standing of many simple chemical processes. For example, the computed
eigenvalues of the bound levels of ground-state H2 were used by McElwain
and Pritchard in theoretical studies of the dissociation of a diatomic
gas.l Another case is the orbiting resonance theory of atomic recom-
bination, which requires a knowledge of the energy, width, and average
internuclear distance of each of the quasibound levels contributing
to the recombination.2 This information is also of predictive interest
in relation to possible spectroscopic and atomic scattering experiments,3

The Ko%os and Wolniewicz (KW) calculation4 of the internuclear
potential for ground-state molecular hydrogen aroused considerable
‘interest, as it yielded the first ab initio potential to achieve
"spectroscopic' accuracy. Their work was shortly followed by a number
of independent computations of the potential's vibrational eigenvalue
spectrum,5_9 which showed that the fully-corrected relativistic, adiabatic
potential4 had a dissociation energy some 4 cm_l greater than the best
existing experimental value,lO This result was rather unsettling, as it
appeared to contradict the variational principle's assertion that a cal-
culation such as that of Kw4 must give a lower bound to the ground-state
dissociation energy. However, this discrepancy has since been resolved

by improved measurements, and the present best experimental dissociation

-1-



8. 146

energy, obtained from Stwalley'sll reanalysis of Herzberg's12 new data,
is 0.7 (+ 0.5) e greater than the theoretical value, 2

Waech and Bernstein8 previously calculated the energies of all the
vibrational-rotational levels of ground~state H2 from the KW potential.4
However, they only used the clamped nuclei (Born-Oppenheimer) potential,
and omitted both the diagonal correction for nuclear motion (adiabatic
correction) and the relativistic correction. In addition, they (incor-
rectly) used the reduced mass of the atoms rather than that of the
nuclei.9 Because of the great deal of interest in this system,13 it
seems timely to-conduct a more thorough study of the properties of the
bound and quasibound levels of the hydrogen isotopes, using the fully
corrected KW potential and the correct (nuclear) reduced mass. The
eigenvalues, and the expectation values of R, Rz, R—Z and kinetic ener-
gy for all the bound and quasibound levels of ground-state H2, HD

and D2 are presented below. These results should be considered in

conjunction with a recent study of properties of the quasibound levels.3

IT. METHODS OF CALCULATION

The interpolation and extrapolation over the computed4 values of
the clamped nuclei potential and its relativistic and adiabatic correc-
tions to obtain the smoothed potential used in the present calculations,
is described in sections IIIB and C of Ref. (9). One additional point
to be noted is that the adiabatic correction is scaled by the inverse

of the nuclear reduced mass, so that the total non-centrifugal potential

-2-
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is slightly different for different isotopes. The radial Schrodinger
equation for the hound states was solved in the manner described in
section TITA of Ref. (9); the only difference is that the present calcu-
lations consider J # 0 levels, so a term J(J+l)/22 is added to the scaled
effective potentiala9 Up to 4000 mesh points were used in the numerical
integration, starting at an inner boundary of 0.3 au and using increments
of 0.0070, 0.0056 and 0.0048 au for H2, HD and D2 respectively.

The only physical constants required for the eigenvalue9 and
expectation value computations are the masses of the atomic nuclei and
of the electron, all in amu(120=12), and the energy conversion factor

1

1 au = 219474.62 cm™*. 4

The masses used, taken from Cohen and DuMond,1
are given in Table I. The effect of small errors in these masses on the

computed level energies would vary as the expectation value of the

kinetic emergy, as is shown by Eq. (2) of Ref. (93015

Quasibound levels with very small widths, i.e., T < 0.05 cm_l,
were located using the Airy-function boundary condition method described
in Ref. (3). For the broad quasibounds lying near the centrifugal bar-
rier maxima, the level energies were placed at the peaks of the internal
amplitude function (see Ref. (3)), and hence should correspond to the
spectroscopically observed level positions. The quasibound widths T

s

on the other hand, were calculated from the height of the
; 12 14
TABLE I: Electron, proton, and deuteron masses in amu( €=12).

me MP Md

5.48597x10 "% 1.00727663 2.0135560

—-3-
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resonance peaks in the collisional time-delay functions, Td(E,J) :3’17

I'=2/[re Ta(max)] .

The expectation value {f} of a quantity f£f(R) , is

R R

+ +
(£ = S ¥, @17 £®) a X v, @t

0 0

where WV’J(R) is the computed exact radial eigenfunction. For the
truly bound levels lying below the dissociation limit? R+ = o0 ,18
while for the quasibound levels lying behind the centrifugal barrier,
R+ = Rmax(J) , the position of the barrier maximum for the given J.
The expectation values for the quasibound levels were evaluated at
the level energies yielded by the Airy~-function boundary condition
method.3 This means that they are not reported for levels
lying above the centrifugal barrier maxima. More seriously, it implies
that the expectation values for the broad levels may not precisely
correspond to the reported eigenvalues, since the latter were defined
by the maxima in the internal amplitude function. However, relative
to the width of these levels, such inconsistencies are of negligible
importance.3

Annotéted FORTRAN listings of the computer programs used in the
present calculations are available in Ref.(19). The bound-state

eigenvalue program incorporates a number of improvements over the

Cooley-Cashion program on which it is based,20 and is quite efficient.

—lym
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For example, the calculation of the eigenvalues and expectation values

for the 348 levels of H, required slightly less than 2 minutes on a

2

Univac 1108 computer.

IIT. RESULIS AND DISCUSSION

Tables II-XVI give the eigenvalues, and the expectation values of
kinetic energy, R, R2 and R-_2 for all the bound and quasibound levels

of the ground (X 12;) states of H HD and D2 , calculated from the

9 2
relativistic-adiabatic KoZos and Wolx{iewiZA potential. Energies are
given in cm'-l and lengths in au (l.au = 0.52917715 o 16} ; the ex-
pectation values of R% and R™2 are given as <R2>1/2 and <R_2>_1/2 to
simplify comparisons. In the eigenvalue tables, the widths of all
quasibound levels for which 0.05 < T £ 100 cm—l are given in paren-—
theses; levels for which T > 100 cm—l are omitted. The heights and
positions of the centrifugal barrier maxima corresponding to the
different J values are listed under U(max) (in the eigenvalue tables)
and R(max) - (in the <k>, <£%>% and <R_2>J/2 tables), respectively.
The solid line across each of the expectation-value tables separates
the results for bound levels from those for Fhe quasibound; the
functional dependence of these quantities on v and J is clearly con-
tinuous across these artificial boundaries.

The results presented in Tables II-XVI were obtained from the

ab initio potential alone, without any empirical corrections.
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However, in Ref. (9) it was shown that even after taking the theoretical
non-adiabatic corrections into account, the KW potential still required
small adjustments in order.to bring the calculated vibrational eigen-—
values into agreement with experiment. The recent improved measurements

of the molecular dissociation energy have since shown that the better of
the two possible derived correction39 is that labeled A". Although A"

is not the final word (see, e.g., the discussion in section IV of Ref. (3)),
it is a fair measure of the direction and magnitude of the small errors

in the ab initio potential.4 The effect on the eigenvalues of Table II

of adding A" to the KW potential is seen in Table XVII; clearly the

deeper eigenvalues are unperturbed, while the higher ones are shifted deeper
by as much as a few cm_l° However, the derivation of A" depends on an
assumed knowledge of the non-adiabatic effects,21 and the latter may not
readily be incorporated into the expectation values. Therefore, the

effects of small residual errors in the ab initio potential are not

considered further.
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9. PERMEABILITY OF ONE-DIMENSIONAL POTENTIAL BARRIERS

All of the techniques and results discussed above have basically
been concerned with the exact description (within the framework of
the Born-Oppenheimer "or adiabatiec approximations) of the relative
nuclear motion of pairs of isolated atoms. On the other hand, useful,
though approximate results for much more complicated ;ystems may some-
times be obtained by assuming that they too may be effectively reduced
to one mathematical dimemsion. This is the framework of the present
chapter. The work presented below will be published in the Transactions

of the Faraday Society, Volume 66, pp. 2997-3006 (1970).
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Permeability of One-Dimensional Potential Barriers

By R. I. Le Roy*#

Theoretical Chemistry -Institute and Chemistry Dept., University og" Wisconsin,
Madison, Wisconsin 53706

. AND
K. A. Quickest T anD D. J. Le Roy

Lash Miller Chemical Laboratories, University of Toronto, Toronto ]8;3‘, Ontario,
Canada

Received 13th April 1970,

A numerical method is described for computing the exact permeability (tunnelling probability)
for any one-dimensional potential barrier, It is used to test the validity of the widely-used approxi-
mate formulae for the tunnelling factors for truncated parabolic barriers. The method is also used
to calculate tunnelling factors for the H4-H, exchange reaction, using the theoretical potential
surface of Shavitt, Stevens, Minn and Karplus, and it is shown that standard Eckart and parabolic
barrier approximations can yield considerable error.

Evaluation of the probability of transmission for a particle impinging on‘a potential
barrier has long been an important problem in the theoretical treatment bf chemical
reaction rates. The early use of tunnelling corrections is discussed by Glasstone,
Laidler and Eyring.! Their usefulness in interpreting the results of proton transfer
reactions has becen reviewed by Caldin,? and their application to the hydrogen exchange
reactions is discussed by Johnston.?

While the potential barrier in a chemical reaction is in general multi-dimensional,
a widely-used approximation has been 1o consider the reaction as motian along a
onc-dimensional (1-Dim) * reaction coordinate ” which is orthogonal tp all other
‘modes of motion of the interacting species. In this approximation, gétimates of

barricr transmission rates have usually been obtained after approximatifg the exact
potential by a model 1-Dim barrier of one of two analytic forms for ‘which exact
analytic tunnelling probabilities arec known : an Eckart barrier.* or an infinite parabolic
barrier.”  An exact tunnelling probability expresson has also been derived ¢ for a
third potential form, the infinite double anharmonic barrier, F(x) = V[l — (x/a—a/x)?];
however, -this result has not yet been applicd to chemical problems, Although
the result for the parabolic potential is for an infinite barrier, it has been widely used

_for truncated parabolas,® probably because of the convenient amalytic expression
obtained for the tunnelling factor in the high-temperature limit.” The Eckart
potential,* on the other hand, is finite, and the potential and its first derivative are
everywhere continuous ; however, while its exact transmission probability is known
analytically, the tunnelling factorscannot be obtainedﬁin closed form. 3

* present address: Dept. of Physics, University of Toronta, Toronto 181, Ontario, Canada.
‘tpresent address: Institut fiir Physikalische Chemie, Universitiit Gottingen, 34 Gottingen,
Biirgerstrasse 50, West Germany. ’ : )

ZA table of Eckart tunnelling factors for a wide range of potential parameter values and reduced
temperatures is given in ref. (3), p. 44.  Johnston (private communication, 1969) computed this table

using the correct transmission probability expression and not his 2 eqn (2-22), in which the last term

should be =*/4, not 2n?/16. :
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2998 ONE-DIMENSIONAL TUNNELLING

Despite the convenience of using the analytlc or tabulated ? results for the two
main model barriers mentioned above these potentials will rarely accurately represent
a reasonable 1-Dim cut through an actual potential surface. Furthermore, the
analytic tunnelling probabilities can not take account of the change in the asymptotic
reduced mass between reagents and products which arises in many chemical situations.
An additional problem associated with the use of Bell’s formulae 7 for parabolic
barricrs is the unknown effect of truncating the barrier at a finite hgight on the

_transmission probabﬂity, and hence on his approximate expressions for the tunnelling

factor.
In the next section, a 51mple numerical procedure is presented for determmmg

- exact transmission coefficients for any 1-Dim potential barrier. This approach is

tested by comparing its predictions to the exact analytic resultsfor an Eckart barrier.*
The numerical method is then applied to truncated parabolic barriers to examine the
vahdxty of Bell’s approximations. Finally, the usefulness of the exact l-Dgn method

" is demonstrated by applymg it to the calculation of tunnelling factors for ithe H+H,

exchange reaction.

SCATTERING BY A ONE-DIMENSIONAL BARRIER

_EXACT BARRIER PASSAGE PROBABILITY

Many elementary quantum mechanics texts derive the exact transmission proba-
_bility for a rectangular barrier,® and the present treatment is qualitatively the same.*

“The Schrédinger equation describing 1-Dim potential scattering may be written in

the dimensionless form
d*y(y)/dy*+ B,IE-V()W(y) = 0, n
where _
y = x[a, E = E[Vo, W(y) = V(x){Vo,
and .
B, = 2uVoa?[h? = 20.746 59u[a.m.u.}¥[kcal/mol] (a[A])>.

In general, the energy and length scaling factors ¥y and a may be chosen completely
arbitrarily ; however, it is usually convenient to associate them with the barrier height

~and_width. In the present discussion, the coordinate x along the reaction path is

Vix)

E\s. .

~q=-

E-Vimee) E~V(+oo)

x B,

=

Fi6. 1.—Schematic potential barrier.

defined such that x~ — oo corresponds to reagents and x= +co0 to products, The
potential V(x) is everywhere finite and approaches constant values in the limits
x2too (see fig. 1). E is the translational energy of the colliding particles. In

sA, Kuppermann has pointed out that a method similar to that described here was previously
presented and used in a study of the Shottky effect.?
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general, the effective reduced mass p may vary along the reaction coordinate, and thg
asymptotic reduced mass of the reagents may differ from that of ghe products.?

However, this may readily be taken account of by introducing a variable mass p =
u(y) into eqn (1), or alternatively by scaling the reaction coordinate appropriately.
while holding u fixed.'* When this question arose here the latter approa&i\ was used,

and hence y is assumed to be a constant in the rest of the derivation. o
" TFor “reagents ”, the solution of eqn (1) may be asymptotically e)%ressed as a

linear combination of plane waves incident on and reflected from thefbarrier, i.e.,
for yx —00 !
¥(y) = Ay exp (i-p)+ Ag exp (~io-p), @

‘where - = {BJE—V(—oo)}}*. Similarly, particles which tunnel past the barrier

to form products may be described asymptotically by a plane wave maving away
from the barrier, i.e., for y~ 400

Y(y) = Ay exp (ina)), (3_)‘

where o = {B,[E—~V(+0)]}*. The probability of barrier passage is the ratio of
the transmitted to the incident flux :
Ar]?

Ay
where v, and v_ are respectively the asymptotic velocities of products (+) and reagents
(—). For fixed u, vy v = oy Ja-, and hence
A" @
Ar]

To facilitate computation of x(E) it is convenient to expand ¥(y) iry terms of its
real and imaginary parts :

w(E) = z-—i—

b4

#(E) = :‘f

() = ¢:1(0) +id2(1),

Comparing this with egn (3) shows that for products, at y~ 4c0:
&1(y) = A cos (x.p), )
$2(y) = Ag sin ().

Starting from this boundary condition with an arbitrary choice of 4y (most con-
veniently, Ay = 1), the two independent solutions ¢,(y) and ¢,(y) may be numerically

“integrated through the barrier to the reagent boundary condition at y~ —c0. There

they may be decomposed into
:(y) = C, cos (a_p)+ D, sin (a_y), ©
$:(») = C, cos (. y)+ D, sin (a_y). :

Comparing eqn (2) and (6), values of 4, and Ay are obtained in terms of values of
the solution functions ¢,(y) and ¢,(y) at adjacent integration mesh points p, and y,.
Substituting them into eqn (4) yields :

K(E) = daefo) sin? [0, =y | Ar | Iyl +iby ) + 16001 +
162071 =21 (7)61(12) + 62 )b2(ya)] 005 [ty —p1)] +
2y (71)d2(y2) =~ b1 (r2)h (¥ )] sin fo(ys -yt )

This is the desired result.  The exact numerical integration of egn (1) and the practical
application of the boundary conditions are discussed below. )
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3000 ONE-DIMENSIONAL TUNNELLING

The above method was tested by applying it to a symmetric Eckart barrier,
P(y) = ljcosh? (p), for which the exact «(k) function is known analytigglly.® For
barriers with B, values ranging from 2 to 200, it was found that singfi‘c precision
numerical integration yielded «(E) accurate to within 1x10-%, for Bi= 0.1, 1.0,
and 2.0. This confirms the validity of the present approach.

INTEGRATION OF EQN (1) AND APPLICATION OF BOUNDARY CONDITIONS

The Numerov method '? is a very efficient technique for the numerical integration
of a homogeneous linear second-order differential equation without first derivatives,

_such as eqn (1).'*> One restriction on its use is that it assumes that thg potential

function ¥(y) is smooth, since when it is not an inordinately small ingrement of
integration is required to yield reasonable accuracy. In the latter situgtion a self-
starting technique such as the Runge-Kutta-Gill (RKG) method ' is z,:ﬁore appro-
priate. The RKG procedure requires more arithmetic, and one mgfe function
evaluation per integration step than does the Numerov method. Hatvever, when
calculating the solution at a given point the latter utilizes the solution at the two
previous mesh points, while the former requires the solution and its first derivative
only at the adjacent previous point. Thus, if RKG is used and the integration mesh
chosen so that  mesh points lie at any potential slope discontinuities, themnumerical
integration is in no way affected by the existence of such discontinuitigs. In the
present work, the RKG procedure was used in the calculations for truncatgd parabolic
barriers, as they have discontinuous first derivatives at y = +1 (see. bglow). The
Numerov method was used in all other cases. .

For either algorithm the accuracy of the integration improves with decreasing
increment Ay until a lower bound is reached beyond which the theoretical improve-
ment in the numerical accuracy is exceeded by the accumulated machine round-off
error. The optimum increment of integration as a function of particle and barrier
size is approxin*yately given by

Ay = Ax/a = F(B,)},

where the height of the barrier is used as V, in the calculation of B,. The value of
the numerical constant F depends on the integration algorithm and the number of
significant digits of machine accuracy. On the 8-digit computer used in the present
work, F = 0.18 was appropriate for Numerov integration, and F = 0.07 for the
RKG algorithm.

For potentials with a finite range, such as truncated parabolic barriers, application
of the boundary conditions equ (2) and (3) presents no difficulties, On the other
hand, realistic potentials which reach their asymptotic values only in the limits
y=~ 400 can only be integrated over a finite interval, and hence the exact boundary
conditions are never achieved. In the present work, the ends of this finite interval,
y- and y,, were defined as the smallest values of | y | for which the first-order WKB
convergence criterion (see, e.g., pp. 112-115 of ref. (84)) was smaller than a chosen
critical value. Thus, they are the solutions of '

., d
[e(]™? ;,;a(y)l = Z,

where a(y) = {BJE — W(»)}* and Z is the chosen convergence criterion. It
was found here that Z = 1.0x 10-* yielded values of x(E) within 1x 10~* of the

exact analytic barrier passage probabilities for Eckart barriers of different sizes.

A Fortran listing of the subroutine used to integrate eqn (1) to yield «(E) is given in
the appendix to ref. (15).
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THE TUNNELLING FACTOR I'(T)

The tunnelling factor is the ratio of the quantum mechanical to the classical
barrier-crossing rate for particles with a Boltzmann distribution of in‘igal kinetic
energies relative to the barrier. In reduced units analogous to those offeqn (1), it
may be written as ? '

"I(T) = % f :K(E) cxp(%ﬁ) dE ®

‘where T = kT/V,, and V, is the barrier height. After obtaining x(E) values over a

range of energies by the methf{i presented above, eqn (8) may be integrated nymerically.
This quantity is in effect an observable and is the point of comparisosj between
theoretical and experimental estimates of tunnelling. '

APPLICATION TO PARABOLIC BARRIERS

The potential form which appears to have been most widely used to account for
tunnelling in chemical processes ? is the truncated parabola:

V) = 1-y* for ~1gy<l ©
=0 for|y| <1,

where particles may impinge on the barrier with energies E>0. In the present
discussion, the energy and length scaling factors ¥, and ¢ used in B, always signify
the barrier height, and the half-width at its base. It is apparent that in this case the
transmission probability function x(E) is completely defined by the cofresponding
value for B,, since eqn (1) is precisely the same for all barriers with different heights
and widths, but the same B,.

It will be convenient to replace B, by the previously used 7 and equivalent
reduced parameter

B = n(B,)* = 14.309 46 (ufa.m.u.] Volkcal/mol])*a[A] = 2197.524V[keal/mol}/vfcm~*}
where v is the characteristic frequency of the harmonic oscillator potential obtained
on inverting the parabolic barrier.* The reduced temperature T used here is equiva-

*While consideration of eqn (1) suggests that B, is a more * nafural ” parameter, previous work
with truncated parabolas 2 7 used B, which is a natural parameter in Bell’s 7 approximate analytic
tunnelling factor expressions.
lent to the previously used 2+ 7 reduced variable « = 1/7. In the following discussion,
particular combinations of temperature, and particle mass and barrier size are charac-

- terized by values of T and B. For given choices of these quantities, exact values of

®(B,E) and I'(8,T) were calculated by the numerical method presented above,
Tlle exact transmission probability * for particles impinging on an infinite para-
bolic barrier: ¥(3) = 1—y?, where ~0 <y< + 0, is

Ko(B,E) = {1 +exp [B(1-E)}-, (10)
where E and f are as defined above, and E may range to +-c0. A widely used approxi~
mation has been to assume that the transmission coefficient for a finite parabolic
barrier may be accurately represented by eqn (10). This question is examined in
fig. 2 where the ratios of approximate {(from eqn (10)) to exact numerical (x.,) trans-
mission coefficients are plotted against E for barriers of different sizes (different f).

The error inherent in the use of k. (B,E) for finite barriers increases with decreasing’

B, and for the particle and barrier sizes considered, eqn (10) becomes satisfactory
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only for energies above the top of the barrier (E>1). However, in a;‘(f cases it is
significantly in error at low values of E, and this will affect the tunnellifp factors at
low temperatures. '

T U T T T T T v T

o0 ftex

FiG. 2.—Ratios of approximate (xc) to exact nutnérical_(xcx) transmission probabilitig'§ for truncated
parabolic barriers, as a function of the reduced energy £. The barrier maxima corregpond to E=1

Bell’s 7 widely used formulae for the tunnelling factors for truncated parabolic
barriers are based on eqn (10). On substituting it into eqn (8) he obtained an analytic
approximation for the resulting integral, yielding

n/pT  exp (UT“ﬁ)x
sin (n/BT) BT —~1

1-BT\ . 1-8TY\ .
{l—<1—2ﬁ7)e ﬁ+(1__-———3—'ﬁ-.j;)e 2”——...}. an

Although individual terms in this expansion have singularities at integer values of
1/BT, there is exact mutual cancellgtion of such terms so that the sum remains finite
and eqn (11) is defined for all values of fT.* Bell also noted 7 that in the high

% In Bell's original treatment 7 he unnecessarily ? restricted the use of eqn (11) to $F >1.
temperaturc region where

exp (1/T—p)

o1 | <b

I (8,T) becomes
n/BT
sin (n/BTY (12)

which has been used widely.? !° The accuracies of these approximate formulae

are illustrated in fig. 3, where their predictions are compared to the exact numerical

values I".(8,T) ; the solid curves used eqn (11) for I, and the broken curves eqn (12).

The breaks in the solid curves at integer values of 1/8T are a reminder that two of the .

terms in the full expansion oﬁight side of eqn (11) are singular at each of these points. .
‘ the ‘

AT =
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3
3
H

A 1 ) 1 L ] I

0 20 30 40

Fic. 3.—Ratiosof approximate (I' ) toexact numerical (I'ex) tunnelling factors for truncated parabolic

barriers. The solid curves were obtained by using eqn (11) for I'», and the broken curves, eqn (12).

The breaks in the former for BT<1 correspond to the points at which pairs of terms in eqn (11)
blow up (i.e., where 1/B7T is an integer).

The effects shown in fig. 3 reflect the trends seen in fig. 2, the errors in the approxi-

mate formulae increasing with decreasing f and T. For all barriersy the simple
approximate formula I'}} is as good as the more general expression I', wherever
the latter is reasonably accurate. For the larger barriers (§220), this appears to
include virtually all T>1/8. On the other hand, for all barrier sizes, none of the
approximate formulae are at all reliable for T<1/8.* In addition to I'!, and ',

*In addition to the results shown in fig. 3, a calculation for B = 80 showed that its I Tex
curve has a minimum of 0.57 at B7 = 0.84, while for all BT 2 1.05 it is within 1 % of unity.

this includes eqn (7) and (10) in Bell's paper,’ which were suggested for use in this
region. The former, proposed for T< 1/, yiclds curves of I' /T, which are identical
to those for I'!, from BT = 0 to approximately their minima, and then rise to infinity
at BT = 1. The latter, designed for T~ 1/8, yields negative values of I /T,
for all T outside a very narrow interval about T = 1/f, and even in this interval it is
significantly less accurate than is I'. :

To put the present results in perspective it is helpful to consider Caldin’s ? table
V11, which contains most of the reliable data on the dimensions of energy barriers
for proton transfer reactions. For all of the casegpresented there $230, and the

_temperatures corresponding to ST = 1 range between 130 and 250 K. Since most

of the results were obtained using I'! (eqn (12)),? the experimental data for these cases
must have corresponded to fT>1, and fig. 3 suggests that their derived barrier
parameter should be reasonably accurate. .However, the present results clearly
demonstrate that in those cases for which eqn (11) had to be used (where ST 1),
the reported barrier parameters are probably unreliable.

Another situation in which Bell’s 7 approximate formulae have been used is in
calculating tunnelling corrections to the rates of the isqtopic H+H, exchange
reactions. Weston '® fitted a parabola to the reaction path at the saddle point of a
Sato 7 potential surface for collinear collisions, and used Beli’s formulae 7 to estimate.
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B = 11.64, so that T = 1/ff corresponded to 340°K. Using the presepf mcthod it
was found that Weston’s '® predicted tunnelling factors at 1000, 504, and 295 K
arc respectively 6 9 larger, and 6 and 35 9 smaller th.m the exact tumai;sllmg factors
for his barrier.

the tunnelling through it. This parabolic barrier was 8.0 keal/mol h%h and had

APPROXIMATION OF BARRIERS BY ECKART AND PARABOLIC FUNCTIONS

RESULTS FOR H+ H,;

This section examines the validity of approximating an actual bargier w:th a
convenient analytic function, by considering the tunnelling contrxbutnon;}o the rate
of the simple hydrogen exchange reaction. Here the exact 1-Dim ba;ii,er is taken
as the minimum potential path on the potential surface for collineaf collisions.
A number of treatments have previously estimated the amount of tunnelling in this
system using Eckart - 1% 18°2% or parabolic *° '® approximations to the actual
potentlal barrier. ‘

The potential surface used here is the one reported by Shavitt, Stevens, Minn and
Karplus,?! scaled by a factor of 0.89 as rccommended by Shavitt.!® The method of
obtaining the present I-Dim barrier from the low-cnergy path on thisgsurface is
described elsewhere.!! Fig. 4 shows the actual energy barrier so obtainegd, curve A,
and five approximations to it. Curves E,; and P, are respectively Eckargg and para-
bolic potentials with both the same height and curvature (second derivative) at the
maximum as the *‘exact” barrier. Similarly, curves E, and P, areEEckart and
parabolic barriers chosen to have the same height, and the same width at half maximum
as the actual curve. The additional curve, S, is the Eckart function Shavitt !*
used in estimdting tunnelling factors for this case. HIS potential had the same curva-
ture at the maximum as the actual barrier, and was ** selected by inspection to give a
good fit to the ab initio barrier over as much of its upper part as possible . The
constant reduced mass used with these potentials is 4 = My/3 = 0.335 94 a.m.u.

r

100

@D
(@)

V(x){kcal/mol]

n
(@]

i kY .

-0 -05 .00 05 0
. «A]
Fi6. §—Comparison of z%ua! theoretical 1-Dim potential barrier for collinear H+H; collisions
(curve A) with analytic approximations to it. Curves P, and P, are truncated parabolas correspond-
ingto P = 14.74 and 24.84, respectively while curves E; and E, are Eckart functions, ¥(x) = V,/
cosh? (x/a), with @ = 0.566 and 0.768 A respectively. E, and P; have the same curvature at the
maximum as does curve A, while E; and P; have the same width at half maximum. Curve-S is the

Eckart function with which Shavitt ¥ approximated the barrier for this case. .

Fxg 3 shows the calculated tunnellmg factors for these potentials as a function of
temperature ; the curves are labelled as in fig. 4. The total computer time required
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to generate curve A was less than | min on an IBM-7094. As might }3?; expected,
the present Eckart tunnelling factors (curves E; and E;) are closer to they-“ xxact values
than are the parabolic results. However, none of the present approxiffjate barriers
yields tunnelling factors that are good, especially at low temperatures. #On the other
hand, the manner in which the approximate results straddle curve A (in fig. 5) suggests
that their main source of error lies in the criteria used to fit the approximate barriers to
the actual one. This is confirmed by the fact that Shavitt’s Eckart function !? yielded
tunnelling factors in remarkable agreement with the present exact values, g‘éspite the
large differences between his barrier and the actual one. Furthermorég’ it seems

-certain that systematic variation of the two free Eckart parameters coulcgsi;'yield even
better agreement with curve A. By comparison, it was found that rza truncated

parabola would yield tunnelling factors in good agreement with curve 5&\ over the
whole temperature range shown. The best fit of this sort {correspondifig to f=219)
had I'(T) values which were significantly too small at high temperatures and too large
at low, Thus, while the tunnelling factors for the H+ H, case are insensitive to the
nature of an approximating barrier except near its maximum, they are very sensitive
to its shape in this region. In any case, exact numerical computations of I'(T’) should
be used whenever the shape of the barrier is known.

» T ‘ T - T T = ]
14
'0""
e L
PN LY
TN
R
2...
e e e et s e e LI, SRR DT R T ST SO, )
i i 1 i
300 400 506 600~ 700"
TIK] '

Fi16. 5.—Tunnelling factors for the potentials shown in fig. 4, labelled in the same manner. The
broken hor.izontal line lies at unity.

CONCLUDING REMARKS ..

. A method has been presented for calculating the exact transmission probabilities
and tunnelling factors for any 1-Dim potential barrier. It has been used to determine
the region of validity of Bell’s 7 approximate expressions for the tunnelling factors
for truncated parabolic barriers. It has also been used elsewhere *! to help correlate
with theory some new experimental measurements of the relative rates of the exchange
rcactions H+H, and H+D,.

The systems in which Bell's 7 formulac are appropriate are precisely those in
which there is relatively little barrier transmission except at encrgies close to and
above its maximum. This insensitivily of such results to the nature of the potential
except near its maximum is further illustrated by the success of Shavitt’s 1° approxi-
mation for the H+H, tunnelling, discussed in the preceding section. This suggests
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that if expcnmental results may be accurately explained using eqn ( llg) or (12) for
values of f and T for which these expressions accurately reflect thq‘-’appropr:ate
truncated parabola (e.g., £ 20 and T> 1/f8), then the truncated parabolg so obtained

. accurately approxsmates the shape and height of the actual I-Dim pogynhal barrier
near its maximum,

The above quantitative confirmation of the vahdxty of eqn (11) and (12,‘3 for Iarge
barrier situations (negligible tunnelling at low energtes) will be reassuringsto experi-
mentalists who have been interpreting their data using these expres&éng Also,

_the present method offers a way of treating cases where tunnelling is uf;portam at
energies well below the barrier maximum, but for which the Eckart funcpons resuits
are not sufficient, However, the whole of the present approach is based on the
strong assumption that a multi-dimensional problem may be meaningfully represented ‘
in 1-Dim. The validity of this approximation has been examined by Truhlar and d
Kuppermann,??
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APPENDIX A: DISSOCIATION ENERGIES OF DIATOMIC MOLECULES FROM VIBRATIONAL

SPACINGS OF HIGHER LEVELS: APPLICATION TO THE HALOGENS

This appendix contains a preliminary account of the work discussed
in Sections 3.1 and 3.2; it is reprinted from Chemical Physics Letters,

Volume 5, pp. 42-44 (North-Holland Publishing Company, Amsterdam, 1970).
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DISSOCIATION ENERGIES OF DIATOMIC MOLECULES
FROM VIBRATIONAL SPACINGS OF HIGHER LEVELS:
APPLICATION TO THE HALOGENS *

f ROBERT J. LEROY ** and RICHARD B. BERNSTEIN

_Theoretical Chemistry Institute and Chemistry Department.
University of Wisconsin, Madison, Wisconsin 53706, USA

» ‘Received 22 December 1969

The distribution of vibrational levels near the dissociation limit D, governed mainly by the long-range
part of the potential. can be WKB-apnroximated to yield a simple expression which permits accurate de-
termination of D Improved ground-state dlssooiat#on encrgies are presented for Clg, Brg and ig.

1. INTRODUCTION ity
n

Since its introduction 44 years ago, the VR) =D - Cn/R : (1)
Birge-Sponer (BS) extrapolation procedure has Differentiating the WKB eigenvalue expression
been widely used (mostly in its original form) to with respect to energy, approximating the exact
evaluate dissociation limits () of diatomic mole- potential by eq. (1), and integrating (neglecting
cules from vibrational spectroscopic data [1]. the small contribution to the exact integral from
The main difficulty in its application arises from the region of the inner turning point), one ob-

the curvature generally exhibited in the "tails" tains

of BS plots near the dissociation limit, which

give rise to uncertainty in the extrapolation. The n+2
present communication reporis a better, WKB- dE(w) F(l %w)
based method (derived and more fully discussed; [D- E(v)]

" elsewhere [2]) which takes proper account of this dv " I"( ,1/ "
curvature,
The new procedure has been applied to the : (Z’.i.?.
. halogens [2], yielding ground state D, values - K,[D - E(1)] 2n (2)
with much smaller uncertainties than heretofore -
- obtainable. These results are presented in sec- Here E(v) is the rotationless (J=0) energy of
tion 3. : level v, i the reduced mass, I'{(x) the gamma
2 function, and K, a collection of constants;
dE @ + 2)/dv is very nearly AG,, 1, the conven-
2. METHOD tional BS ordinate. Eq. (2) requxres (as is gener~
* ally observed) positive (upward) curvature in BS
For highly excited vibrational levels lying plots for energies near enough to the dissociation
close to the dissociation limit D, the potential limit for eq. (1) to be appropmate
V(R) through their outer turning points may be In practical applications it is convenient to
well represented by an inverse-power functional- use the integrated form of eq. (2); for n+ 2 this

; becomesi

* Work supported by National Science Foundation

i Grant GB-16665 and National Aeronautics and Space
i Administration Grant NGL 50-002-001.

i *# National Research Council of Canada Postgraduate
Scholar,

1 Expressions analogous to eq. (3) have also been ob~
tained {2, 3] for the n = 2 case, and for a potential
with an exponential long~range tail.
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E(@) =D - [(vp-0)H, , (3)

where

n-2
Hy= (5 ) Ky -
Here v is an integration constant; for cases of
»n > 2 it can be identified as the "effective" (non-
integer) vibrational index at the dissociation lim-
it (i.e., E(rp) = D).

Determination of D (together with n, C,, and
vp) using eq. (3) requires at least four (prefer-
ably more) vibrational energies. The best ap-
proach is to carry out a non-linear least-squares
fit of experimental eigenvalues to eq. (3), to
yield a "best" set of parameters. However,
typical non-linear regression programs ™ require
fairly accurate initial trial values of the un-
knowns to ensure convergence to the "best" final
values. Suitable starting values for » and vy may
be obtained by fitting the data to the following
linear expression, obtained from eq. (3):

dE(v)/dv n-2

== (vp-1v). (4)
d2E (v)/do? (i 2.) D

Using these n and vp values, eq. (3) becomes

linear in the new variable

w s[ %}}) (UD'”)](% ,

n-2

E(v) = D - wK, . (39
Fitting the data to eq. (3') then yields trial values
of D and K,,. The full set of parameters now
serves as the trial set for the refined non-linear’
least-squares fit to eq. (3) which yields the "best"
parameter values. In principle, eqs. (4) and (3')
‘are just as accurate as eq. (3). However, in
practice, the prior smoothing of experimental
energies to obtain the derivatives in eq, (4) in-
troduces some error, so that the subsequent fit
to eq. (3) is slightly more reliable.

3. RESULTS. GROUND-STATE DISSOCIATION
ENERGIES OF THE HALOGENS

Application of the present method to spectro-
scopic data for Clg, Brg, and Iy, together with
conclusions regarding the nature of the long-

*The present computations employed the University of
Wisconsin Computing Center's subroutine GASAUS.
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range forces, are discussed in detail elsewhere
[2,3]. Attention here is restricted to the values
obtained for the ground (X 123;) state dissocia-
tion energies.

The experimental data are the band origins for
transitions between the v" =0 level of the ground )
electronic state and highly excited vibrational
levels (¢'") of the B3H6u state, Fitting these to
eq. (3) by the numerical methods discussed in
section 2, yielded the dissociation limits D for
the B-states, Subtracting from D the accurately
known 213'1,2 - 2P3,2 atomic spin-orbit splitting
(AE) yielded values of D, for the ground (Xlzé)
states. )

3.1, Chlorine

The most extensive measurements are for
35, 35C12 [4]. The present analysis of these data
places D some 2.85(+0.15) cm~1 above the highest
observed level, v' = 31 (cf. the experimenters'
value: 3.1(+2) cm-1 [4]. Subtracting from D the
AE of 882.50 cm-1 [5,6] yields a dissociation en~
ergy of Dy = 19997.25(+0.15) cm~1 (see table 1).

3.2, Bromine

For each of the Fure isotopic species
9, 79Br2 and 81,8 Bry, energies of four adja-
cent vibrational levels very near the B-state dis~
sociation limits have been reported {7]. Analysis
by the present method yielded binding energies
of 5.24(+0.17) cm-1 and 6.96(x0.22) cm~1, re-
spectively, for the highest observed level of each
species, v' =531,

) 11t has been found [3] that the experimenters' {7} vibra-

tional assignments for the four levels near the dis~
sociation limit should be increased by one.

. Tablel a
Results for the halogens

) .

- B Sngu state X IE; state

Species v !
D~ E@y Eem™l) Dy (eV)

35,85¢1, 31  2.85 £0.15
3.1 £2.0) [4)

79,7Br, 53 5.24 +0.17
. .7 £ 0.5) 7]

81;8lpr, 53 6.96 +0.22
S @4.120.5) 7]

I, 72 19.6 £1.1
(12.6) (9]

2.479 367 £ 0.000019 -
1.97069 + 0.00004
1.97095 =+ 0,00005

127,127 1.54249 +0.00014

a)The values in parentheses are the previous best es-
timates of these binding energies, The uncertainties
in the present results correspond to a 95% statistical
confidence limit. The energy conversion factor was
taken from ref, {16].
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These values are significantly greater than
the 2.7(x0.5) and 4.1(+0.5) cm-1, respectively,
obtained [7] from extrapolations of limiting
curves of dissociation. Subtracting AE =
= 3685.2(+0.3) cm~! [8] from the thus-obtained
D values yields:

D0(799 79Br2) =15 894.5(:!: 0.34) cm-l 9

and

Do(81 81Br,) = 15 896.6(+0.37) em™ !,
The zero-point shift is in good accord with the
more-directly obtained value of 2.029(+ 0.013)
cm-1 from ref. [7]. :

3.3. Iodine oo

For the case of 127,127],, the data [9] for the
highest observed levels of the B-state are rela-
tively less accurate. The present analysis yields
a binding energy for the uppermost recorded
level, v' = 72%, of 19.6(+1.1) em-1 (considerably
greater than the experimenter's estimate [9] of
12.6 cm-1),

Using AE = 7603.15 cm~1 [5,12] one obtains
Dy = 12440.9(x1.1) em-1, This value differs sig-
nificantly with the previously recommended one’
of 12452.5(+1.5) cm~1 [13]; the source of the dis-
crepancy is discussed elsewhere [14],

4. CONCLUSIONS

A new method has been described for extra-
polating beyond the highest observed vibrational
levels of a diatomic molecule to determine its
dissociation limit., On the basis of the available
evidence {2, 3], it appears to be more reliable
than the utilization either of the limiting curve of
dissociation** or of a BS extrapolation. For

*1t has been found [10, 11} that the vibratidnal numbering
of ref. [9] should be decreased by one.
**See, for example, ref, {15].
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levels near the dissociation limit for which the
BS plot shows positive curvature, its use should _
supersede that of the conventional Birge—Sponer '
extrapolation, . !
Table 1 summarizes the results of applying 1
the present method to the determination of the i
halogen dissociation energies. Binding energies {"
of the highest observed B-state vibrational levels i
(vi_I) are also tabulated and compared with pre- b
viously reported values. ¥
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APPENDIX B: RECOMBINATION OF IODINE ATOMS IN DILUTE SOLUTIONS

OF ARGON

The rate constants reported in this section are analyzed
according to a mechanism which assumes thermal equilibrium between
I and Ar atoms, and molecular I-Ar,-  Fitting the mechanism to
the experimental data yielded an estimate of this equilibrium
constant and its temperature dependence. Following the discussion
of Section 4.2 (above), these are used to determine approximately
the depth and minimum position of the I-Ar potential well. It
should be noted, however, that the values obtained are probably some-
what large, since the expression used for the equilibrium cbnstantl
treats the quasibound levels of the diatomiez as unbound, while in
fact they will make a significant contribution to the equilibrium
popalation of I--Arht3

The work presented below is reprinted from the Proceedings of

the Royal Society of London, Series A, Volume 316, pp. 81-96 (1970i.

FOOTNOTES :
1. S. K. Kim, J. Chem. Phys. 46, 123 (1967).

2. See Chapter 7.

3. D. E. Stogryn and J. O. Hirschfelder, J. Chem. Phys. 31, 1531 (1959).
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Recombination of iodine atoms in dilute solutions of argont (

.'BY G. Burxs, R. J. LEROY,I D. J. Morriss§ axp J. A. Braxs|

Lash Miller Chemical Laboratories, University of Toronto, S
Toronto 181, Ontario, Canada RN

(Communicated by B. G. W. Norrish, F.R.S.—Received 30 June 1969
—Revised 17 November 1969)

The reaction 21 4-Ar-> I,+ Ar wag studied at 298, 323 and 423 K by flash photolysis. The
overall rate constant, kg, for this reaction is a linear function of {I,}/[Ar], but below
[L}/[Ar] ~ 104, the relation becomes non-linear and kg, falls below extrapolated values.
The fall-off is explained in terms of & mechanism involving an IAr intermediate:

I+Ar < IAr
IAr+4+I—> I,+Ar.

The equilibrium separation in such an IAr complex is 0.56 nm and the binding energy is
6.3 kJ mol-* (1.5 keal mol~!), This mechanism predicts the onset of the fall-off in agrgement
with the available experimental data. Moreover, the temperature dependence of this onset
and the temperature dependence of the recombination rate constant from 298 to 1500 K
. are also satisfactorily explained.

In addition to the above, the new mechanism yields guantitative agreement between
our new rate constants and those reported previously. These combined data for 208 K
yield & value of 3.00 {+ 0.16) x 10° 12 mol~2 51 for the rate constant for the reacbion

21+ Ar-> T, +Ar,
- and one of 1.00(+0.09) x 1012 1 mol-2 =1 for 2I+I,-> 2I,.

Several other mechanisms are slso considered, including some previously suggefted in

* the literature. It is shown that none of these explains satisfactorily all the experimental data.

- However, most of the available experimental date could be explained, if it were assumed

“that the recombination proceeds via an unobserved electronically excited I, formed from
two 3P atoms, with a potentiel well 21 to 29 kJ mol-! deep (5 to 7 keal mol-1).

INTRODUCTION
.. . The termolecular recombination of iodine atoms in the presence of a third body,
oM 2T+ M - I, +M, )
A[T,1/dt = gy [T1*[M] (2)

B . was studied by Rabinowitch & Wood (1936), using a photostationary method and
.~ by Christie, Harrison, Norrish & Porter (1955), Strong, Chien, Graf & Willard

N t This work was presented, in part; at the Toronto Meeting of the American Physical SR
. Bociety: Bull. Am. phys. Soc. 11, 12, 638 (1967), and, in part, at the Meeting of the American e
© Chemical Society, Atlantic City, September 1968. -
.1 Present address: Theoretical Chemistry Institute, University of Wisconsin, Madison,

- Wisconsin 53706, U.8.A.
§ Present address: Department of Chemical Technology, Ryerson Polytechnical Institute,
Toronto, Ontario, Canada. -
|| Present address: Department of Food Science, Umvermty of Toronto, Toronto 181,
Ontario, Canada.

6 [81l] " Vol, 316, A.
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(1957), Bunker & Davidson (1958), Engleman & Davidson (1960), Kramer, Hanes
& Bair (1961) and Porter & Smith (1961), all of whom used flash photolysis, Rabino-
witeh (1937) suggested that such recombination proceeds via an I-M complex.
If more than one third body (M,) contributes to the: reaction, R&bmowmch’
mechanism may be generalized as follows:

Feat

I+ M, <=>IM;, (3)
IM, +1—% T, + M, 4) -
IM, -+ TM; —% T, + M, + M, (5)
d[I)/dt = ;zvl Jeag X1 [IM,] +i§,~ jZ}lch[IM,-] [1M,]. (6)
Assuming that equilibria (3) are maintained, equation (6) reducesito
ALY = 3 b Kol + 5 3; iy Ko Ko 1 M D) )

where Kg; = ky,;/k_s; is the equilibrium constant for reaction (3).

The experimental rate constant &, (equation (2)) has usually been obtained by
optically monitoring the concentration of I, following the flash. In this case, the
-apparent iodine atom concentration is

[Ty = [T+ z [IM,] = [1] (1+ 5] KM[MJ) )

Where [I japp is twice the concentration of dlssocmted molecular iodine (i-e.
d[Iz]/ db = — % d[I]app/ ds.
Replacing [I] in equation (2) by [I],,,, and combining the result with equation (7),
one obtains
Fegpg = (d[Ia]/dt) Mapp M1

N
= (1 -+ 351 —Kai[Mi]> (k4,1K 81t i§2 kg K3 [M,1/[M,]

N N
+ 33 Kyl KMIMYML),  ©)

‘where M, is the diluent gas which is present in large excess. ,
In the past, it has usually been implicitly assumed that concentrations of IM,

complexes are negligible compared with the jodine atom concentration, and that

' K5 [M,] < 1 for all 4. The contribution of (5) also was usually neglected. In this case,

sinee in most experiments the only third bodies available were molecular iodine and

& smgle dlluent gas, equation (9) reduces to

Fons = Ran K ant + Kax, Kap, [To]/ [M] }

= g+ R [T/ M. (10)
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Equation (10) has been veriﬁed for various M over an appreciable range of |
[1.]/[M] ratios (Christie et al. 1955). However, Christie ef al. (1955) and{Kramer

- et al. (1961) observed that if the [I,]/[M] ratio is less than about 2 x 10‘4g0,,,s falls

below the extrapolation of results obtained at higher concentration ratios. oreover,
Christie (1962) deduced the existence of the fall-off from the results of Eunker &
Davidson (1958). Since fall-off occurs at low dilution ratios, it cannot he ascribed
to the thermal effects described by Burns & Hornig (1960) and by Burns (1967).

" Christie ef al. (1955) suggested that the fall-off could be attributed to the form%tion of

metastable iodine molecules which are deactivated only by collisions with §2(12 ).

. However, they made no attempt to identify the metastable iodine.

~ The present work was undertaken to investigate this low concentration ratio
fall-off and to determine the nature of the intermediate that would accouht for its

existence.

EXPERIMENTAL
The iodine recombination reaction in argon was investigated in two conventional

~ flash photolysis apparatuses. The reaction vessel of apparatus I was doublewalled,

constructed of quartz tubing, 167 cm long, and had a 35mm diameter. 'ﬁhe flash

.- lamp, also made of quartz tubing, was 175 cm long and had a 9 mm diamg ster. The
- flash was generated by discharging through the lamp a 10 uF capacitor, a,f.{, ypically
) 15kV. The lamp and the reaction vessel were mounted parallel within §. polished
" aluminium reflector. The reflector was wrapped in heating tape and asbestosinsula-
‘" tion. The reaction vessel could be heated to 450 K ; the tempefature fluctuation along -
- the length of the cell was less than 2 K. A greaseless vacuum system was constructed
' * for these experiments; Teflon type stopcocks were used in the vacuum system.

Flash photolysis apparatus II was similar, though physically smaller. A single
walled reaction vessel and flash lamp were mounted in a furnace; the portions of the
vacuum system containing iodine were enclosed in an oven which could be heated

- to 1200 K. Greaseless stopcocks were used in these portions of the vacuum system.

The recombination was monitored using a quartz incandescent lamp, collimating
.lenses and an RCA 931-A-photomultiplier tube. The analyzing beam was rendered
monochromatic using an interference filter and a Corning no. 3387 cut-off filter.
This combination of filters had a transmission peak at 487nm with a peak half-
width of 7nm. The amplified output of the photomultiplier Was'displayed on an

" oscilloscope and photographed. Four to seven photographs were taken and combined

to obtain one value of the rate constant. A second photomultiplier monitored the

P © drift in intensity of the analysing light. The response time of the photomultiplier

" circuits was better than 1.5 ps.
The iodine molecule concentration was determined from the optical transmission

of the cell before and after filling with an I,~Ar gas mixture; for this purpose, the
decadic extinction coefficient was determined for each apparatus. In these deter-
minations, an ice bath was used to produce a standard iodine vapour pressure, The

6-2

. 187

-
R

Ay R . - -
N Rl oo g
. . et



it

P e R

s T

e e L L L L L T L S L i A e s

LA A L 3 N T L AR 1B ! o TR E N e -

84

. To obtain kg, the data were reduced according to the integrated form of equa-
tion (2). For ratios [I,]/[Ar] > 10~ (‘high ratio’ results), the values of ks (shown in

10k, /Pmol-2 g1

G. Burns, R. J. LeRoy, D. J. Morriss and J. A. Blake

ResvLrs

10-%%,,./1?mol-2s~%
(]

104([L,)/[Ar])

Figure 1. Recombination rate constants, &, against [L;]/[Ar] at room temperature: BD,
Bunker & Davidson (1958); CHNP, Christie e al. (1955); O, Strong ef al. (1957); @,
Eramer ef al. (1961); ..., this work-apparatus 1; x, this work-apparatus 2.

T T T T T T T T T -
-
Lo I | | | I i I 1
0 5 10
104({L,]/[Ax]D)

Froune 2. Recombination rate constants, &, against [L,]/[[Ar] at 323 K (A)‘

and 423 K (@), obtained from apparabus L.
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figures 1 and 2) were a linear function of [I,])/[Ar], as predicted by equation (10).
The values of &y, and by, defined as the intercept and slope of this linear plot, agree
well with those in the literature (see table 1) excopt that the presont values of k4, at
298 and 323 K are somewhat lower than those of previous investigators. However,

 this discrepancy may be partially explained in terms of the mechanism which ac-
counts for the low concentration ratio fall-off. This mechanism will be described

e

T s s

oo v

" later in this paper.

TABLE 1. SUMMARY OF RESULTS ON RECOMBINATION OF IO0DINE ATOMS
IN Ar AND I, INTERPRETED ACCORDING TO EQUATION (10)

T/K . 10-Fk,/Pmol-2s~! 10~13F, /12mol-25-1

Reference

298 3:3+0.36 0.85 Christie et al. (1953)
‘ 2.9+0.3 1.9+0.2 Bunker & Davidson (1958)
2.4+0.1 1.4+0.2 This work, apparatus 11
- 323 3.15 0.973+0.1% Engleman & Davidson (1960)

2.99 +0.15% 1.07 +£0.18} Engleman & Davidson (1960}
1.9+0.1 1.0+0.1 This work, apparatus I

423 1.84 0.227 + 0.053% Engleman & Davidson (1960)
1.66 + 0.051 0.143 +0.038% Engleman & Davidson (1960)
1.6+0.1 0.38+0.2 This work, apparatus I

1 Caloulated from data obtained by Bunker & Davidson {1958).
1 Obtained from measurements in excess of He.

K

10° %, /12 mol-#s~1 105[1,]/mol1-2

170

no filter used

" TABLE 2, kyye, [15] AND [Ar] ROOM TEMPERATURE, APPARATUS 1

102[Ar]/moll-*

e 0.067 8.01
- 1.62 . 0.077 7.79
1.67 0.096 7.97
1.48 0.150 6.49
“1.77 0.139 5.83
1.77 0.169 6.11
1.84 0.134 4.23
2.08 0.165 4.25
2.13 0.219 4.21
2.32 0.228 3.58
2.39 0.254 2.40
. 2.44 0.373 1.67
- Ky CryO, filter solution used
1.78 0.075 .77
1.69 0.083 7.89
2.00 0.148 7.91
2.05 0.199 7.86
1.87 0.181 7.15
2.11 0.158 7.89
2.27 0.214 5.41
1.96. 0.332 7.87
2.13 0.369 5.68
2.27 0.284 3.95
2.18 0.390 4,12
2.49 0.823 3.94
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Room temperature rate constants for [I,]/[Ar] < 10~ (‘low ratio’ results) fall
below the linear extrapolation from those at higher ratios, in agrecement with the
findings of previous investigators (table 2 and figures 1 and 2).

DisouUssSIioN

The rate constant drop-off at low concentration ratios (figures 1 and 2) may be
explained in terms of the participation of an intermediate species in the reaction
process. In this section several possible intermediates are considered; however,
it is shown that only one of these can successfully account for all of the experingental

_observations.

Participation of 1,(B 3114

It was pointed out by Nikitin (1966) that the low [1,]/[Ar] fall-off may be due to
‘the participation of electronically excited iodine molecules. Such molecules may be
- -formed either from ground state atoms (*P3) or from excited iodine atoms (*P;). The
. recombination of excited atoms with ground state atoms into attractive states,

one of which (B3I1g; ) is known, may take place. It has been argued by Snider ( ;966)

other I,. Thus, afo low [L,]/[Ar], this route for recombination would be ineffpctive
and the fall-off would occur. Snider also pointed out that this mechanism igmot in
disagreement with the data of Christie et al. (1955). However, Steinfeld & Klemperer
(1965) found that B 3II, molecules predissociate very readily on collision with inert

gases. Therefore deactlvatlon via collision with I, could not be important. Moreover,

“the radiative lifetime- of B3I, state is of the order of a microsecond, which is three

" orders of magmtude shorter than the typical recombinsation tinse. For these reasons,
B B3H . state cannot account for the observed fall-off.

Participation of excited 1(°P;) atoms
Another possible explanation of the fall-off involves direct participation of
I(*Fy) atoms: I(*P;)+1, > I(*Py) + I, (11)

- Alternatively, I(*P;) atoms may participate in the overall recombination reaction
~ via electronically excited I,, other than 3II,,

I(2P}) + L,(15;) - Ly(elec. excited) +1(2Py) - T,(15F) + I(°Py) (12)

© in a reaction which precedes the recombination. The fall-off would then be observed
. at low [L,]/[Ar]. Experiments suitable for testing the validity of this mechanism
. were carried out by Christie et al. (1955), who flash photolysed I, in Ar, using a

potassium dichromate filter solution in a double walled photolysis reaction vessel.

This filter limited the wavelength of the photolysing light reaching the reaction
* mixture, so that the B3I1g, iodine molecules, formed in the photolysis were at least
. 800 cm* below the dissociation limit of the state. In this case the B 3Ilg, molecules

predissociate to give two 2P atoms, thus effectively preventmg the production of

IGRy).

190
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Christie ef al. (1955) found that the use of the potassium dichromate filter solution

. did not affect the magnitude of the rate constants. Unfortunately, only onc experi-
ment was performed in the fall-off region; it suggested that a meghanism involving

reactions (11) and (12) cannot account for the abnormally small rate constants at
low [1,]/[Ar]. We extended the range of the Christie ¢f al. (1955) experiments and
obtained twenty-one rate constant measurements in the ‘low-ratio’ region. In
eleven of these, a potassium dichromate filter solution was used; in the remainder,
no filter was used. The results (table 2) indicate that the rate constantsin the fall-off
region may be lower by about 10 %, if a filter solution is not used. However, such a
discrepancy is almost within experimental error. Therefore, it is concluded that

‘while reactions (11) and (12) may contribute they are not the main cause of the

observed fall-off. This conclusion is in agreement with direct measurements of the

1(%P,) relaxation rate due to I(*F;)—1I, collisions, reported by Donovan & Husain
(1965).

Participation of vibrationally excited 1,(X1E})
To explain the fall-off at low [1,]/[M], Christie (1962) proposed the following

mechanism: ‘
I4+T4+M -+ M, (13y

T +1, - 21, (14)

‘where I} is a vibrationally excited ground state (127} ) iodine molecule. According to
" this mechanism, the relaxation (14) becomes the rate determining step at low [L,]/

[M]ratios. However, Shields (1960) showed that vibrational relaxation of I,(*X}) is
much too fast to cause the fall-off in k4 at concentration ratios of the order of 10‘}.
The theoretical analyses of Nikitin (1962) and Snider (1966) also preclude an explan-
‘ation involving reactions (13) and (14), which will not be further discussed here.

Participation of electronically excited I, produced from two *Py atoms
An alternative explanation of the fall-off involves the participation of electronic-

~ally excited molecules, I¥, produced from atoms in the ground electronic state

“{i.e. two I(2P;) atoms). For the experimental situation where only I, and a single

 inert gas M are present as third bodies, this mechanism may be written as

Fixs

I+I4+M-2 L4M, - (15)
I+T4+1, % T +1,, (16)
I+I+M~.:$I§“+M, (17)
I+I+12%I§‘+Iz, (18)
I 4+, 2> 91, (19)

If more than one excited state is involved, reactions (17), (18) and (19) are repeated
for each state. This mechanism is particularly interesting because it would imply

191
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that in the fall-off region the internal (electronic) distribution function of I, differs,
during recombination, from the equilibrium distribution function (Nikitin 1966).

Assuming a steady state in I and the approximations inherent in equation (10),
the following expression for k&, is obtained:

(K kg [1,]/[M])?
17+ (Byg + Kleyg) [1,]/[M]

Kty by + [ 1,1/1M) (T,)/0)
= kst bl = A e+ Kby Ty 2

Fogng = Foyg+ (fegg + Kloyy) [T/ [M] — i

where K = Fylk_yp = kygll_sq. (21)

The mechanism (15) to (19) explains the fall-off at low [1,]/[M] provided that kg

and kg are very much smaller than Kk, Then for the special case of very small
values of [I,]/[M]
and for large [1,]/[M] such that Kk, [L]/[M] > k,,,

kops % Ioys oy + (Kye + Foy) [L21/[M]. (23)

Values of the four independent parameters k5, kg + kg, %17 and Kk,g were derived
for the best fit of equation (20) at room temperature, for the special case M = Ar,

~ using the data of Christie ef al. (1955). These data were used rather than our own

(table 1), because while the latter are more abundant at very small [I,]/[Ar] values,
the former extend to much higher concentration ratios, and hence reach both high

. and low asymptotic regions. If the mechanism (15) to (19) is valid, the constants
“obtained should apply equally well to both sets of data.

It was found that the experimental differences between our work and those of
Christie ef al. are appreciable at higher [I,]/[Ar] (figure 1). On the other hand, the
Kk, value obtained from our data (table 1) agrees well with that obtained from
the Christie ef al. data. This value of Kk, 1.6 (+0.7) x 1013 12mol~2571, quanti-
tatively relates the nature of the If internuclear potential which determines K, to
the effective collision diameter buried in k.

The If mechanism may now be tested by considering its predictions with respect

~ to four factors. These are: (1) the nature of the internuclear potential for the I

complex, (2) the dependence of the ratio at which fall-off begins, ([I,}/[M])4ey, 00
the nature of the third body M, (3) the temperature dependence of ([I,]/[M])4ey, and

- (4) the apparent inconsistencies (shown in figure 1) between the experimental

results obtained in different laboratories.

Chang (1967) has used perturbation theory to calculate moderately long-range
interaction energies for pairs of degenerate atoms for non-resonant cases. His
results show that of the sixteen molecular states formed from pairs of ground
*P; iodine atoms, at least seven other than the ground X1} state are attractive.

kops = Foys+ Kleyg[1,1/[M], (22)

hg‘s
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_ These are the single degenerate *II, state, and the doubly Q-degenerate I1,,,%I1,,
" and 311, states. Of these, only the first two aro optically accessible from the ground
. ‘state and only the 3II;, has been observed (Brown 1931).

Caleculations were carried out to determine the parameters of the I§ internuclear
potential which would account for the fall-off, while giving a reasonable collision

- diameter for reaction (19). The equilibrium constant was evaluated for a nymber of

well depths (£) and equilibrium separations (B,,) for I}, using the expresgion Kim
(1967')“[ obtained from Hill’s (1955) partition function integrals: .

_ B4R, E) by (g)

~where gy/gi, the ratio of molecular to atomic degeneracies, is taken to be 2/16,
and F(E/kT) is the generalized hypergeometric series (Erdelyi 1953):

Fo(1,1;7/4,9/4; BIkT). (26)°

- Expression (24) assumes a Lennard-Jones (12-6) interaction potential fof If. .

[o])
7

H[keal mol -1
-3

i Il I3 i l 1 ]

3 1 ] : | ] ] H 1

l
0 100 B . 200
o R o/AL
Ficuzre 3. Plot of che*q for electronically excited iodine, I¥, against the interaction well depth,

E. The curve was obtained by combining the fitted value of Kk,, with equation (24) and
with the kinetie theory hard sphere collision frequency.

The calculated equilibrium constants were combined with the derived value of

- Kk,q to give corresponding values for k5. From each value of kg, the hard sphere

collision diameter o, for reaction (19) was calculated assuming zero activation energy

- and unit probability factor. In figure 3, o‘cR;g’q is plotted against Z, showing the

possible combinations of collision diameter, equilibrium separation and well depth

+ Modified for homonuclear molecules by multiplication by a statistical factor of },

T o 0 00
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for I} It follows from this plot that for a reasonable value of o, the value of  should

be somewhere between 21 and 29 kJ mol~! (5 and 7keal mol—?), This is three times
the 7.5 kJ mol™* (1.8 kcal) depth of the potential well of A®Il,,, the only observed
(Brown 1931) excited Ij state which dissociates to two 2P’y atoms. However, Chang’s

(1967) calculations show that at long range the ®I1,, and 3II,, states are respectively

2and 3} times more strongly attractive than A3I1,,. Hence, one of these states will
probably have the 21 to 29 kJ mol~! well depth required of an acceptable IF complex.
We thercfore conclude that this mechanism (equations (15) to (19)) makes an ac-
ceptable prediction for the nature of the internuclear potential of 1.

As a check on equation (24), the equilibrium constant K for formation of If in the

- A 3[1,, state was calculated directly. The internal partition function was based on
vibrational energies observed by Brown (1931) and rotational constants calculated

from formulae given by Herzberg (1950). This yielded K = 0.0851mol-%, only 209,
larger than the corresponding 0.0721mol~! value generated from expression (24).
This concurs with the conclusion that the 7.5kJ (1.8kecal) mol-1 deep. A 3I1,, state
cannot be the main cause of the drop off.

Condition (2) can now be further tested by considering the asym totlc forms of
expression (20) for very large and very small concentration ratios. Afi approximate
value of ([I,]/[M])4ey may be obtained by solving equations (22) and (23) for their

point of intersection ([}_2_1) . . '
[M] dev -Kkls
Since the relative efficiencies of various third bodies depend principally on the

stability of the intermediate IM complex, it seems reasonable to asgume that the
relative efficiencies are independent of the final iodine electronic state formed. Thus

(26)

~ kysand k,; would show the same dependence on the choice of third body M, and hence
kypoc ky, where ky is the experimentally obtained intercept of equation (23).

fTherefore, (26) becomes ([Iz]/[M])dev o« kM‘ (27)

Christie (1962) has noted just such a linear relation between the experimental
values of ([1,]/[M])4ev and ky. Moreover, the linear relation (27) predicts that the
fall-off should be observed with helium as third body at values of [I,]/[He] which
are smaller than those used by Christie et al. (1955). Thus, from this viewpoint,
the data of Christie et al. supports this mechanism (equations (15) to (19)). However,
the mechanism fails to explain the difference between the 208 K value of ([I,]/[Ar])ev

" obtained by Christie ef al. (1955), i.e. 4 x 10~4, and that reported here, i.e. 1 x 10-%

. (see figure 1).
The temperature dependence of ([1,]/[M])gev may be determined by rea,rrange-'

ment of equation {26) to yield
[12]) ~ K
. 28
(0., ~ 2 | @)

Assuming that k,, has zero activation energy and that k_,, has an activation energy

- equal to the well depth of the internuclear interaction in I (i.e. 21 to 29 kJ mol-1),
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“equation (28) prediets o twofold increase in ([I,]/[M )4,y 88 tomporature is ineronsed
© from 298 to 323K, and a 10 to 20-fold inercase in ([I,]/[M])yov 88 temperature is
" increased from 298 to 423 K. Although the data of this work at 323 and 423K aro

‘somewhat scattered, it appoars that this prediction is not fulfilled; the onsetb of tho

-,: fall-off appears to be roughly independent of 7' (figures 1Mand 2).

et oz
s A -

The fourth requiroment of the mechanism, that it explain the digerepancios which
figure 1 shows to oxist among the results obtained in different laboratories, is also
not fulfilled. This mechanisin does not suggest any route by which the diverso sets
of data can be made self-consistent. ’

The mechanism involving electronically excited If can explain the fall-off only
if it is assumed that Ij is deactivated very efficiently by I,(*X}), so that the de-
activation by inert gas is a slower process by a factor of 10-8, Theoretical studies

" by Nikitin (1966) support such an assumption. However, Steinfeld & Klemperer
"(1965) found that I,(*Z}) was only ca. seven times more efficient than Ar in the

" electronic de-excitation of I,(*II,).

. RNty T,
S pisinmhiih s

Participation of intermediate IM complex

An alternative explanation for the low-ratio fall-off has been proposed by Troe
& Wagner (1967), who measured the dissociation rate constant for iodine in argon

" in high pressure (ca. 10 MN m~2; 100atm) shock waves. They observed a transitionin

TN E

* the dissociation rate constant from bimolecular to unimolecular with increasing
* argon pressure. They suggest that the recombination rate constant should updergo

. asimilar transition from third to second order, and by extrapolating their fesults to

P

room temperature theoy prediet that the transition argon concentration would be
approximately 70 mmoll-1, A similar effect has been observed by Porter, Szabo &

- Townsend (1962) for iodine atom recombination in high pressures of nitric oxide
" chaperon.’

T a3 N e

In this case, the mechanism is that given by equations (3) to (5), where I and a
single inert gas M are the only chaperons present for the cases expemmentully con-
- sidered. Furthermore, since the absolute concentrations of I, used experimentally

" are always quite small, it is safe to assume that Ky,[I,] < 1. In this case, (9) be-

-w“, e [P 1.‘ _, S i ‘MEA-HT "j s

oomest L Kokt Ko R, [T/ M)+ Ky oy M1
obs = (1+ KguM])?

The room temperature data of this work (both apparatuses) and the data of Christie

et al. (1955) and of Strong et al. (1957) for M = Ar were fitted to (29) using a Hooke

& Jeeves (1961) pattern search method. The best fit was obtained with a negative

(29)

= . value of Kjyksy. v, indicating that the effect of reaction (5) was less than the

T e R BT AN Lk Sl T

. experimental scatter in the data. T, The data were then fitted to an expression which
3 neglected reaction (5): b Kanghact Kol (LY
o I+ EnDIP

©+ Furthermore, a fit with the four parameters constrained to be positive yielded an
- insignificantly small value of K}, fc,,m_m which had a very large uncertainty.

(30)
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TABLE 3. RATE AND EQUILIBRIUM CONSTANTS AI&T ROCM TEMPERATURE

These values are obtained for M = Ar from a fit of equation (30) to 58 experimental k,,;
the fit had a standard error of + 10 %.

Ky, /lmol—? 3.18( +0.63)
Kaaokogy/12mol-252 * 3.00(+0.16) x 10°
Ko, kg, /1° mol~2s2 1.00( + 0.09) x 1012
kya/lmol—1s—t 0.94 x 10°
Foyy,/lmol-2g-1 1.7 x 10?

Ky, /lmol-2 6 x 102

The results of this fit are listed in table 3 along with calculated values for K, and
ky,. The latter were obtained by assuming that the steric factor for &y, (unity) was
twice that for %4,,. The standard error of the fit was +109%,; a total gf 58 points
were fitted. This agreement contrasts with the discrepancies in these ggsults when

Ig ([T}/[Ar])
5 4 3
1 | I 1 d
61— -
o
i
9 L
£
L&
<4
s |
. &
a
3_.
5 4
9 i lA|l|lllll" 1 |||||||[ ] I

0.1 05 1.0 5 10
10%([T,1/[Ar]) :

Fiours 4. Plot of &,y = Ky, (1 4+ K, [Ar])® against Ig ([1,1/[Ar]) at 298 K. Data as in figure 1 and

table 2; the curve is obtained by substituting the constants of table 8 into equation (30).

@, Strong et al (1957); O, Christie ¢f al. (1955); 4, this work—apparatus 1; A, this
work—apparatus 2; , best curve. :

they are treated according to (10) (see figure 1). Infigure 4, ky4y = kg (1 + K4, [Ar])?
is plotted against log ([I,]/[Ar]); the experimental points and the curve represented
by the parameters of table 3 are shown. It was not possible to apply this analysis to
the data of Bunker & Davidson (1958), since the individual values of [1,] and [Ar]
were not available. ' -
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Calculations wers carried out to determine the plausibility of the numerical values
~ of table 3. The value of k,,, was used to obtain the hard spheroe collision diameter for
reaction (4). The activation energy was assumed to be zero; a probability factor of
0.5 and an electronic degeneracy factor of %; for reaction (4) were also assumed. The
" calculated value, 0.23 nm, is reasonable in view of the approximations made.
The experimental value of Kj,, was applied to expression (24)} to yield the com-
bination of values of well depth, E, and equilibrium separation, E,, for the I-Ar
" interaction, which corbination corresponds to the experimental equilibrium con-~
. stant, These are plotted in figure 5.

'E [kcal mol—?

DY

1 l 1 I ] | I ' L . I
0.2 0.4 0.6

B, /nm

: Frours 5. I-Ar Interaction potentials: combinations of B (well depth) and R,, (équilibrium
separation} which, on substitution into equation (24)t yield the derived (table 3) value of
Kapre

Finally, tho calculated value of Ky;, was substituted into equation (10), and it was
-~ found that the assumption, that Ky [I,] <€ 1, is justified over the experimental
range of [1,]. ‘
As an additional test, the temperature dependence of k,, (defined by equation
(10)as ky, = Kyx Fya,) is predicted by this mechanism. Since reaction (4) is unlikely

.. to have any activation energy, the temperature dependence of k,,, was assumed

CTRTTE AN ST

Lo .
oo o Pl B e S b ST a5 B el T

A SO

R e R -y S S

to be 7%, Also the temperature dependenco of Ay, may be dotormined from oqua-
- tion (24) for any of the ‘suitable’ potentials illustrated by figure 5. The resulting
temperature dependence of k,, for two such I-Ar potentials is shown in figure 6

T Multiplied by & statistical factor of 2 for heteronuclear molecules, and with Tuldt
roplucod by gu/gi0e = 1 .

kL NPT A = m et e 4 g e
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along with available experimental data. Values are scaled relative to the 208K
value given in table 3. This shows that an I-Ar interaction potential 6.3 kJ (1.5
keal) mol~*deep with anequilibrium separation of 0,55 nm can accountfor both the
negative temperature dependence of k,, and the apparent low concentration ratio
fall-off.

The IM mechanism may be further tested by considering its predictions with
respect to the four factors treated in the discussion of the I mechanism.

1g(T'/K)
25 . 30
T T I I i }

10 —~{90
vk BDGS 1 =
7 sf 1k
e T E=6.3kJ mol™? g
s L (15keal) 85 &

‘ Qa ‘ Rpy=0.55nm &
& 3
T T o)
2 4 &

E=153kJ mol™? ]
10 (365keal) _lso
o Rg;~0.19nm i

05+ i

, ! i L ) I L | [N R l 1

300 500 1000 1500 2000

T/K

Fraure 6. Temperature dependence of k,, for two possible I-Ar interaction potentials, The
experimental curves are : SCGW, Strong et al. (1957); BD, Bunker & Davidson (1958);
PS, Porter & Smith (1961); BDGS, Britton, Davidson, Gehman & Schott (1955).

The first of these involves the plausibility of the internuclear potential required
by the intermediate IM species. This interaction potential is some five times deeper
than that calculated for van der Waals’ forces between argon and xenon (1.25kJ
mol-1; 0.3 keal mol~'), which is iodine’s neighbour in the periodic table. This
appears quite reasonable to us.

Inspection of expression (30) indicates that the fall-off will begin, not at a critical

- concentration ratio, but at some critical third body concentration; i.e. when K z,[M]

ceases to be negligible compared with unity. Thus for various third bodies, the
critical third body concentration [M]g, is proportional to 1/Kgy. If similar I,
concentrations are used in all experiments, as was done in the work of Christie ef al.
(1955), we may therefore write

([(Lg/M])gev oc K-

R B b o A e
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- Furthermore, assuming that k,y; will-change only slightly for different third hodies

- M, the'equation (1) definition of ky; yields

[1}/[M)gey o€ Kaprlogy = ke

. This is the approximate relation noted by Christie (1962). Hence, the IM mgghanism
“correctly predicts the M dependence of ([I,]/[M1)gey- :

The value of {M]y,,, as stated previously, is proportional to 1/K . Ag the tem-

.perature increases, K 5y will decrease; thus [M],,, will increase. Again assuming that

_similar I, concentrations are used at all temperatures, this mechanism I{gedicts

g

a decrease in ([I,]/[M])4e, With increasing temperature. However, in this c§se the

~temperature dependence is relatively small because the potential well of i;he IAr
complex is only about 6.3 kJ mol-! deep. Temperature increases from 298 ﬁi) 323K
or 423K respectively, would invoke 18 %, and 50 %, decreases in ([I,]/[Ar])qéy, Which

is well within the experimental uncertainty (see figures 1 and 2).
- The final test of the IM mechanism is whether or not it accounts for the discrep-
ancies, shown in figure 1, between experimental values of k,;, obtained in different
laboratories. A cursory examination of figure 4 shows this to be the case.

The above arguments have shown that taking account of the steady state concen-

_tration of IM intermediate is the only way of explaining the low conceytration

ratios drop-off which agrees with all the experimental observations, In gddition,

- . this mechanism explains the observed negative temperature dependenge of the
- experimental rate constants and predicts the depth and minimum position of the
-TAr potential well.
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Note added in proof, 17 November 1969. Christie et al. (1955) have reported room
temperature recombination rate constants for each of the other inert gases: He,

-Ne, Kr, and Xe. These sets of data were fitted in turn to equation (30), with
Ky, keyy, held fixed at the value given in table 3 (1.0 x 102 12 mol-2 s~2), The results
- are presented in table 4, where ky = Ky ks There were too few experimental

points to allow Kz, to be determined with precision, and for M = He and for one
‘of the fits with M = Ne, K, was arbitrarily set equal to 1.0.
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TABLE 4. RATE AND EQUILIBRIUM CONSTANTS AT ROOM TEMPERATURE
yor M = He, Ne, Kr anp Xo

M Ka/Bmol3 5=t 1079 Jo /12 mol~? g1
He (1.0) 1.0 (+0.2)
Ne (1.0) 1.4 (£0.2)
0.1 (+6.0) 1.3 (£ 0.3)
Kr 7.3 (+4.6) 4.4 (+0.5)
Ko 5.4 (+2.3) 5.4 (+0.3)

The results listed in tables 3 and 4 were obtained using the University of -
Wisconsin Computing Centre nonlinear regression library GASAUS.

RErERENCES

Britton, D., Davidson, N., Gehman, W. & Schott, G. 1956 J.Chem. Phys. 35, 804.

Brown, W. G. 1931 Phys. Rev. 38, 1187. '

Bunker, D. L. & Davidson, N. 1958 J.am. Chem. Soc. 80, 5085.

Burns, G. 1967 Can. J. Chem. 45, 2369.

Burns, G. & Hornig, D. F. 1960 Can. J. Chem. 38, 1702.

Chang, T. Y. 1967 Rev. mod. Phys. 39, 911.

Christie, M. 1., Harrison, A.. G., Norrish, R. G. W. & Porter, G. 1955 Proc. Roy. Soc. Lond.
A 231, 446.

Christie, M. I. 1962 J. am. Chem. Soc. 84, 4066.

Donovan, R. J. & Husain, D. 1965 Nature, Lond. 206, 171.

Engleman, Jr. R. & Davidson, N. R. 1960 J.am. Chem. Soc. 82, 4770. X

Erdelyi, A. (Editor) 1953 Higher transcendental functions, vol. 1, 182. New ¥ork: McGraw-
Hill,

Gillespie, L. J. & Fraser, L. H. D.

Herzberg, G.
Nostrand.

Hill, T. L. 1955 J. Chem. Phys. 23, 617.

Hooke, R. & Jeeves, T. A. 1961 J. Ass. comput. Mach. 8, 212.

Kramer, H. H., Hanes, M. . & Bair, E.J. 1961 J. Opt. Soc. Am. 51, 775.

Kim, 8. K. 1967 J. Chem. Phys. 46, 123.

Nikitin, E. E. 1962 Ilinet. Katal. 3, 830.

Nikitin, B. B. 1966 Theory of thermally induced gas phase reactions p. 128, Bloomington:
Indiana University Press.

Porter, G., Szabo, Z. G. & Townsend, M. G. 1962 Proc. Roy. Soc. Lond. A 270, 493.

Porter, G. & Smith, J. A. 1961 Proc. Roy. Soc. Lond. A 261, 28. '

Rabinowitch, BE. 1937 Trans. Faraday, Soc. 33 283.

Rabinowitch, E. & Wood, W. C. 1936 J. Chem. Phys. 4, 497.

Shields, F. D. 1960 J. Acoust. Soc. Am. 32, 180.

Snider, N. 8. 1966 J. Chem. Phys. 45, 3299.

Steinfeld, J. I. & Klemperer, W. 1965 J. Ohem. Phys. 42, 3475.

Strong, R. L., Chien, J. C. W., Graf, P. E. & Willard, J. B. 1957 J. Chem. Phys. 26, 1287.

Troe, J. & Wagner, H. G. 1967. Z. phys. Chem. N.F. 55, 326.

1936 J. am. Chem. Soc. 58, 2260.
1950 Molecular spectra and molecular structure, pp. 106-108, Princeton. Van

200




VOCABULARY REVIEW FORM

NO.:
SUBJECT TERM: 7 P ;; STI DIVISION ACTION:
!@y@;{@af’ i%f@h?}_ﬁ ()APPROVED [ JDISAPPROVED
COMMENTS :
ADD AS A NEW TERM: [3)POSTABLE [ _JNONPOSTABLE
ADD OR DELETE CROSS REFS. AS SHOWN BELOW,
() CHANGE SPELLING FROM:
(C)DELETE
()DELETE AND TRANSFER TO:
{)CHANGE TERM TYPE (Specify)
GGESTED BY: AIAA  [JFACILITY [ _JL. C.
NN N E )OTHER
E: 3 Maveh 7/ STGNATURE :
JIN LIEU TERM:
} Petewtyal Evers ¢ :
BCOPE NOTES (SN): = GORIESS

USE (U) [Add or Delete]:

[USED FOR (UF) [Add or Deletel]:

BROADER TERMS (BT) [Add or Delete]:

eitwer NT o RT éﬂza

Peienkial ewnergq,

RELATED TERMS (RT) [Add or Delete]:

NARROWER TERMS (NT) [Add or Delete]:

de ?MImg sn whic

éﬁ(m%w Yo gsg%

COMMENTS ¢

DEFINITION:

ITEM ACCESSION NQ.: ISSUE] CATEGORY

N?1-19787 |¢f| &¢

TEST 6801.1

N?71-19747




VOCABULARY REVIEW FORM

NO,s
SUBJECT TERM: , . STI DIVISION ACTION:
/%?‘e’ﬂf,,a/ Eéi"ﬁﬁ.?"s (CJAPPROVED [CJ0DISAPPROVED
COMMENTS :

3 A0D AS A NEW TERM: [XJPOSTABLE [ __JNONPOSTABLE

(T )ADD OR DELETE CROSS REFS, AS SHOWN BELOW,

[T CHANGE SPELLING FROM:

[DELETE

[ JDELETE AND TRANSFER TO:

() CHANGE TERML_SP’E‘ (Specify) )
SUGGESTED BY: ATAA FACILITY [ JL. C.

Ve C)OTHER: &
DATE: ,{/4?'3 7/ STGNATURE:
IN LIEU TERM: \

Covlom b Polent s/ -

KCOPE NOTES (SN)s: TEGORIES ¢

USE (U) |Add or Delete]:

USED FOR (UF) [Add or Delete]:

BROADER TERMS (BT) [Add or Delete]:

RELATED TERMS (RT) [Add or Delete]:

Coolowmb Roleit/al

hvelear plagl §/es
Nvelear pa{w%pa/

NARROWER TERMS (NT) [Add or Delete]:

y\@/g(@?ar che e 1§ Hz

COMMENTS ¢

DEFINITION:

ITEM ACCESSION NQ.:- - ISSUE] CATEGORY

N71=19737 |sg| 24

TEST 6801.1

N71-19%74°%




